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ABSTRACT 

 

COMPUTER SIMULATION OF ELECTROMIGRATION INDUCED VOID -

GRAIN BOUNDARY INTERACTIONS AND THE PREDICTION OF 

CATHODE FAILURE TIMES IN BAMBOO STRUCTURES 

 

ÖREN, Ersin Emre 

Doctor of Philosophy, Department of Metallurgical and Materials Engineering 

Supervisor: Prof. Dr. Tarik Ö. OGURTANI 

 

January 2003, 242 pages 

 

 

The purpose of this work is to provide such a comprehensive picture of void 

dynamics, shape changes and void grain boundary interactions that one should 

eventually be able to predict main reasons and conditions under which premature 

failure of metallic thin film interconnects occurs.  

 

By introducing the concept of assembly of discrete microelements a rigorous 

reformulation of the internal entropy production and the rate of entropy flow terms 

is developed for the multi-component systems composed of surfaces and/or 

interfaces. The generalized forces and conjugate fluxes associated with the virtual 

displacement of a triple junction and the ordinary points are determined. This 

formalism also takes into account in a natural way the mass transport process 

between the bulk phase and the void region, in terms of the normalized local values 



 iv 

of Gibbs free energy of transformation in addition to the contribution due to local 

curvature of the advancing reaction front. 

 

A well posed moving boundary value problem describing the dynamics of curved 

interfaces and surfaces associated with voids that are interacting with grain 

boundaries is obtained. Utilizing indirect boundary element method, the Laplace 

equation is solved. The resulted nonlinear partial differential equation is solved 

numerically by Euler’s method of finite difference.  

 

As a special application of the theory extensive computer simulations are performed 

on the void configurational evolution during the inter- and intra-granular motion, 

under the actions of capillary and electromigration forces in thin film interconnects.  

 

In this thesis, very rich computer simulation results have been obtained in regard to 

void motion and shape changes under various experimental conditions such as 

applied electric field, the wetting parameter, interconnect width, the initial void 

morphology and finally the grain textures. 

 

A set of formulas representing not only the upper and lower bonds for the cathode 

failure times but also the median time to failure is deduced for the bamboo and/or 

near-bamboo structures which is in excellent agreement with the published 

experimental data. 

 

 

Key words : Electromigration, surface diffusion, metallization, void morphology, 

bamboo-lines, grain boundary, texture, median time to failure. 
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ÖZ 

 

ELEKTROGÖÇ’E BAGLI BOSLUK-TANECIK SINIRI 

ETKILESIMLERININ BILGISAYAR MODELLEMESI VE BAMBU 

YAPILARDAKI KATOT BOZULMA ZAMANLARININ TAHMINI 

 

ÖREN, Ersin Emre 

Doktora, Metalurji ve Malzeme Mühendisligi Bölümü 

Tez Yöneticisi : Prof. Dr. Tarik Ö. OGURTANI 

 

Ocak 2003, 242 sayfa 

 

 

Bu çalismanin amaci; mikro-elektronik devrelerdeki metalik ince filmlerin bozulma 

nedenlerinin ve yasam sürelerinin tahminini saglamak için gerekli olan bosluk 

dinamigi, bosluklarin sekil degisiklikleri ve bosluk ile tane sinirlari arasindaki 

etkilesimlerin ayrintili bir sekilde incelenmesidir.  

 

Yüzeyler ve/veya arayüzeyler içeren çok bilesenli sistemler için, içsel entropi 

üretimi ve entropi akma hizi terimleri, sinirli mikroelemanlar toplulugu kavrami 

kullanilarak gelistirilmistir. Üçlü kavsaklar ve siradan noktalarin hareketleri ile 

baglantili olarak genellestirilmis kuvvetler ve bunlara bagli akilar elde edilmistir. 

Bu yaklasim, boyutsuzlastirilmis yerel egrilige ek olarak yerel Gibbs dönüsüm 

serbest enerjisini de göz önüne alarak esas faz ile bosluk arasindaki madde 

transferini de dogal bir sekilde açiklamaktadir.  
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Tane sinirlari ile etkilesim halindeki bosluklar ile ilgili olarak egimli yüzey ve 

arayüzeylerin dinamigini tarif eden, iyi tavirli hareketli sinir deger problemi elde 

edilmistir. Laplace denklemi dolayli sinir elemani yöntemi kullanilarak 

çözülmüstür. Elde edilen dogrusal olmayan kismi diferansiyel denklem sayisal 

olarak Euler’in belirli fark yöntemi kullanilarak çözülmüstür. 

 

Bu teorinin özel bir uygulamasi olarak, uygulanan elektrik alan, islatma 

parametresi, metalik ara-baglantilarin kalinligi, baslangiç bosluk morfolojisi ve tane 

yapisi gibi farkli deney degiskenleri kullanilarak, boslugun tane içi ve taneler arasi 

hareketi ve sekil degisiklikleri ile ilgili çok zengin bilgisayar simülasyon sonuçlari 

elde edilmistir. 

 

Ayrica, katot bozulma süreleri için sadece alt ve üst sinirlari degil ayni zamanda 

ortalama süreyi de veren bir dizi formül elde edilmis ve bunlarin yayimlanmis 

deneysel veriler ile mükemmel bir sekilde uyusmakta oldugu gözlenmistir. 

 

 

Anahtar Sözcükler : Elektrogöç, yüzey difüzyonu, metallestirme, bosluk 

morfolojisi, bambu hatlari, tane sinirlari, tane yapisi, ortalama bozulma zamani. 
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BEM : boundary element method 
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CPFT : cathode-pad failure time 

ad  : inter-atomic distance 

σD
~  : self diffusivity 

0
σD  : minimum surface diffusivity corresponding to a specific surface 

orientation 

DF : density function 

DT : detachment time 

e   : unit electronic charge 

0E   : remote applied electric field 

F   : Helmholtz free energy 

iF   : generalized force 
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FT : flight time  

g  : specific Gibbs free energy density 

g(  : volumetric Gibbs free energy density 

vbg  : specific Gibbs free energy of formation 

G  : activation energy 

GFET  : Gibbs free energy of transformation 
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k   : Boltzmann constant 

l   : curvilinear coordinate along the void surface (arc length) 

gl  : mean distance between bamboo grain boundaries or the grain size  
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LGMCFT : logarithmic mean cathode failure time 
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diffusion paths (half fold number) 

dm  : number of division for the numerical integration 
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P  : source point 
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q   : heat received by the system 
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S   : entropy 
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flightt  : flight time 

t̂   : surface tangent 

T   : temperature 

),( QPT  : directional derivative of the fundamental solution 
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TJ : triple junction 

U   : internal energy 

),( QPU  : fundamental solution of Laplace equation and represents the field 

generated by a concentrated unit charge at P acting at a point Q 

UBCFT : upper bond cathode failure time 

ix  : atomic fractions 

V   : volume 

w  : width 

Z  : effective electromigration charge 
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γ   : surface tension 

δ   : variational operator 

ε   : boundary of the singularity 

iθ  : segment turning angle  

θ   : angle formed by the local surface tangent and the direction of the 

applied electric field 

κ  : curvature 

λ   : wetting parameter 

µ  : chemical potential 

)(Pµ  : density function that are continuously distributed over the boundary 

ρ   : radius of curvature 

oτ  : normalized time 
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φ  : the misorientation of the symmetry direction with respect to the 

direction of the applied electric field 

χ   : electron wind intensity 

ψ  : angle that denotes the amount of rotation of the microelements adjoint 

to the triple junction in the anti-clockwise direction 

ω  : reversible work done on the system 

Α  : surface diffusion anisotropy strength 

Γ  : specific mean atomic density 

∆   : space-scaling operator 

r
v∆  : vector that connects the successive nodes 

Μ   : generalized phenomenological mobility 

Ρ  : power dissipation 

Φ   : energy received by the system 

Ω  : amount of energy transported to the individual phase from the other 

phases through mass transfer 

Ω  : mean atomic specific volumes 

 

iii.  Symbols 

 

jd σξ   : extent of the jth chemical reaction taking place in σ  phase  

ℜ  : phenomenological mobility coefficient 

ϑ   : electrostatic potential 

ϕ   : dihedral angle  
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υ   : grain boundary tilt angle 

∇  : del operator 

2∇  : Laplace operator 

 

iv. Subscripts 

 

b  : bulk 

em  : electromigration 

ex  : external 

in  : internal 

g  : grain boundary 

ord  : ordinary point 

s  : surroundings 
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σ  : interfacial layer 

 

v. Superscripts 

 

−  : left hand side of the system  

+  : right hand side of the system 
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long  : longitudinal  

trans  : transverse 

 

vi. Signs over symbols 

 

g(  : denotes volumetric quantities 

ĝ  : denotes surface densities 
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PREFACE 

 

Electromigration is the mass transport of a metal due to the momentum transfer 

between the conduction electrons and the diffusing metal atoms when an electrical 

current passes through a metal thin film.  

 

Gerardin first reported electromigration in 1861. This and all the subsequent early 

studies were concerned with liquid alloys and it was until the 1930’s that the much 

slower process of electromigration in the solid state was demonstrated and 

investigated. For at least a hundred years, electromigration was an interesting 

problem in solid-state physics, fascinating research at the universities, but of no 

interest whatsoever commercially.  

 

When the integrated circuits made its commercial appearance in 1966, all of this 

changed; electromigration was rediscovered and has been the subject of intense 

study. This discovery, coming as a surprise to the industry, threatened to stop 

integrated circuit development in its tracks until solutions to problem become 

available. This was possible only through intense research and development efforts. 

The reason electromigration was a problem in integrated circuit technology lies in 

the peculiar combination of material properties inherent in integrated circuit 

conductors and in the relatively severe use conditions (Lloyd, 1997). 
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Commercial interest in the subject of electromigration led to extensive research 

efforts in the 1970’s. After 1975, most of the important concepts associated with 

electromigration failure had been identified, but many of the finer details of these 

concepts, and their interaction to produce reliability problems were not completely 

appreciated. In the two decades following, these concepts have been refined to the 

point where a reasonable understanding of what makes a circuit reliable and 

unreliable has been achieved. 

 

Among a variety of approaches developed to study electromigration phenomenon, 

computer simulation is a powerful and efficient one. Through a computer 

simulation, it is easier to consider multiple mechanisms involved in 

electromigration to enhance the accuracy of the model. Also it enables one to 

observe the macroscopic effects of the microscopic variables to reveal the insights 

of this phenomenon that may not be experimentally possible. 

 

The electromigration induced failure of metallic interconnects is a complicated 

process, which involves flux divergence, vacancy and/or atom accumulation with or 

without compositional variations, void and hillock nucleation, growth and shape 

changes (Arzt and Nix, 1991; Nix and Arzt, 1992). A near-bamboo grain structure 

is produced as the width of these interconnects is reduced to microscopic 

dimensions. This near-bamboo structure contains both interconnected networks of 

grain boundaries as well as grains, which span the width of the line. In this case, 

electromigration-induced failure processes become more complicated due to the 

existence of grain boundary diffusion in addition to the surface and bulk diffusion 

mechanisms (Sanches et al., 1992).  
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In Chapter 1 of this thesis, a detailed literature review for the electromigration 

phenomenon and the void grain boundary interactions in terms of triple junctions is 

summarized. 

 

A summary of the rigorous irreversible thermodynamic treatment of morphological 

evolution of curved void surface layer, interacting with the grain boundaries, at the 

presence of electromigration-induced forces is presented in Chapter 2. A completely 

normalized and scaled partial differential equation obtained through this 

phenomenological treatment is useful not only for the computer simulation studies 

of alloy systems, but also gives some clues how certain material parameters of a 

specific system may or may not be important in the determination of durability of 

interconnects.  

 

In Chapter 3, the numerical methods and procedures used in the solution of the 

completely normalized and scaled partial differential equation obtained in Chapter 

2, are outlined comprehensively. 

 

The extensive simulation experiments on the configurational changes associated 

with voids during the inter- and intra-granular motions in two dimensional space, 

which is utilizing various initial void morphology, interconnect texture, with or 

without anisotropic surface diffusion and vacancy diffusion from the bulk (void 

growth) are summarized in Chapter 4.  

 

The computer program, which is developed in C Code for the computer simulation 

studies, is listed in Appendix B. 
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CHAPTER 1 

 

LITERATURE SURVEY 

 

1.1. Overview 

 

Modern semiconducting chips include a dense array of narrow, thin-film metallic 

conductors that serve to transport current between the various devices on the chip. 

These metallic conductors are called interconnects.  

 

As integrated circuits become progressively more complex, the individual 

components must become increasingly more reliable if the reliability of the whole is 

to be acceptable. With the complexity of today’s microelectronics; an extraordinary 

level of reliability must be maintained. For instance, if the probability of failure for 

a transistor is one in a million, and the integrated circuit (IC) contains a million 

transistors, failure is very near certainty. And today’s modern integrated circuits can 

have more than ten million circuit elements. Consequently, for any acceptable 

reliability on the chip level, today’s circuit elements must be among the most 

reliable things ever built in the world.  
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However, due to continuing miniaturization of very large scale integrated (VLSI) 

circuits, thin-film metallic conductors or interconnects are subject to increasingly 

high current densities. Under these conditions, electromigration can lead to the 

electrical failure of interconnects in very short times by reducing the circuit lifetime 

to an unacceptable level (Mahadevan et al., 1996).  

 

It is therefore of great technological importance to understand and control 

electromigration failure in thin film interconnects. 

 

In conventional metal wires like those used in house wiring, joule heating limits the 

allowable current to about 24 /10 cmA . At current densities higher than this the wire 

will heat up and fuse. Because they are deposited onto large efficient single crystal 

silicon heat sinks, thin film interconnects in integrated circuits can sustain current 

densities up to 7 210 /A cm  (Wang et al., 1996) without immediate damage. 

 

Electromigration causes several different kinds of failure in narrow interconnect. 

The most familiar are void failures along the length of the line (called internal 

failures) and diffusive displacements at the terminals of the line that destroy 

electrical contact. Recent research has shown that both of these failure modes are 

strongly affected by the microstructure of the line and can, therefore be delayed or 

overcome by metallurgical changes that alter the microstructure. 
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1.2. Interconnects and Processing 

 

Interconnect metals and alloys must meet most of the requirements listed below  

 

Ø Low resistivity 

Ø Make ohmic contacts to p and n type silicon (Si) 

Ø Low level of stress 

Ø Coefficient of thermal expansion (CTE) close to Si 

Ø Good adhesion to Si and silicon oxide (SiO2) 

Ø Reaction to Si and SiO2 should be minimum during fabrication 

Ø Resist the transport of matter (called electromigration) due to high 

current densitie s in integrated circuits  

Ø Remain morphologically stable under high temperatures 

Ø Be able to be deposited into thin films by simple deposition techniques 

such as sputtering. 

 

By 1965, aluminum (Al) met most of the requirements above. The main obstacle in 

1965 was the requirements between Si and Al. The solution was to add 1-2% Si to 

Al film. 

 

By 1968, integrated circuits decreased in size. This caused an increase in 

electromigration failure of Al interconnects. As integrated circuit dimensions 

decrease, the current density and the contact resistance increase. This results in the 

increase in electromigration failure, which in turn result in a short lifetime of the 

integrated circuit. In 1968, the solution was to add 1-2% copper (Cu) to Al. 
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But as the years went by, integrated circuits interconnect dimensions have 

decreased ever since and the dangers of electromigration failure have increased. 

Additional restrictions, rather than requirements, were needed for interconnection 

and circuit design. These are called scaling laws which were used to maximize 

integrated circuit performance. 

 

Ø Electrical signals must be above a noise level 

Ø Technological requirements that fix operating voltages 

 

Today, the major challenges of interconnects are stress and electromigration. Both 

of these challenges lead to hillock and hole/void formation, which ultimately lead to 

device failure. 

 

One of the requirements of acceptable metal interconnect in integrated circuits is its 

ability to be deposited into a thin film form. The metal must also be able to be 

deposited by simple deposition techniques. These techniques include: 

 

Ø Vacuum evaporation 

Ø Sputtering 

Ø Chemical vapor deposition 

 

In figure 1.2.1 a cross-sectional view of the interconnect structure can be seen.  
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Figure 1.2.1: Cross-sectional view of the interconnect structure. 

 

The deposited metal is often highly polycrystalline. The resistivity of the deposited 

metal is usually greater than the bulk values. Table 1.2.1 below shows example 

metal comparing bulk and thin film resistivity. 

 

Table 1.2.1:  Resistivity of some metals used in thin films. 

 

Metal Thin film 

(Ω m x 108) 

Bulk  

(Ω m x 108) 

Deposition Technique  

Al 2.8-3.3 2.67 Vacuum evaporation 

Au 2.4 2.2 Vacuum evaporation or sputtering 

Ni 12 2.9 Vacuum evaporation or sputtering 

Mo 10 5.7 Sputtered and annealed 

 

The increased resistivity is due to the structure of the thin film, which is more 

disordered with smaller grains than its bulk counterpart. These smaller grains carry 
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a higher defect and dislocation density. This causes the electrons to scatter more 

frequently at the grain boundary region due to the smaller grains and its highly 

crystalline structure. This increases the residual resistivity, which in turn ads to the 

overall resistivity via Matthiessens’s rule. 

 

After the deposition process, the unwanted portion of the thin film is etched away 

by using lithographic or similar techniques. This leaves the wanted interconnects. 

 

Many devices today require interconnect dimensions of about µ 1  or less. At these 

small dimensions, along with steep topography, a uniform film deposition is needed 

to ensure uniform contact. 

 

 

1.3. The Physical Basis of Electromigration 

 

Electromigration in generally considered to be the result of momentum transfer 

from the electrons, which move in the applied electric field, to the ions which make 

up the lattice of the interconnect material (Arzt, and Nix, 1991). 

 

When electrons are conducted through a metal, they interact with imperfections in 

the lattice and scatter. Scattering occurs whenever an atom is out of place for any 

reason. Thermal energy produces scattering by causing atoms to vibrate. This is the 

source of resistance of metals. The higher the temperature, the more out of place the 

atom is, the greater the scattering and the greater the resistivity.  
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For electromigration one needs a lot of electrons, and also one needs electron 

scattering. Electromigration does not occur in semiconductors, but may in some 

semiconductor materials if they are so heavily doped that they exhibit metallic 

conduction. 

 

To describe the electromigration process let us use an electrostatic analogue. The 

driving force for electromigration expressed in this way is 

 

eEZF *=  (1.3.1) 

 

Here, *Z  is the effective valance or effective charge, e  is the unit electrostatic 

charge and E  is the electrostatic field. The Value of *Z  has been expressed by 

Huntington 1961, as  

 

*
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Z
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
=
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ρ

 (1.3.2) 

 

Here N  is the density of conduction electrons, dρ  is the specific defect resistivity, 

dN  the defect density, ρ  is the metal resistivity, and *m  is the effective mass of 

the electrons near the Fermi surface taking part in the momentum exchange. 

 

The effective charge *Z  characterizes the momentum transfer, its value which is 

not well understood, can be inferred from experimental data. 
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In analyzing electromigration, it is useful to separate the net driving force on an 

impurity into two parts. One part is called the ‘electron wind force’ that refers to the 

effect of momentum transfer from the incident electrons to the ionic atoms when an 

electrical current is applied to a conductor. The other part is called the ‘direct 

force’; while the ions tend to move in the direction of the impulse during the 

momentum exchange, which is in the direction opposite to the electrical field, they 

also tend to move in the direction of the applied field since they are positively 

charged. The balance of these two forces determines the movement of the ions. 

 

winddirecttotal FFF +=   (1.3.3) 

 

For simplicity, the term “electron wind force” often refers to the net effect of these 

two electrical forces. This simplification will also be used throughout the following 

discussion. The schematic picture of these forces can be seen in figure 1.3.1.  

 

 

Figure 1.3.1: The driving force for electromigration.  

 

Using the Einstein - Nerst relation for diffusion in a potential field, the drift velocity 

is obtained as, 
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kT
jeDZ

kT
eEDZF

kT
DBFvdrift

ρ**
====  (1.3.4) 

 

Here, B is the mobility, D  is diffusivity, k  is Boltzman’s constant, T is absolute 

temperature and j  is the current density. 

 

From Eq. (1.3.4) electromigration induced mass flow is seen to be directly 

proportional to the current density and the diffusion constant D. 

 

The drift velocity, driftv , will be a function of the diffusion pathway and the 

temperature dependence of driftv  will be characterized by the activation energy of 

the predominant diffusion mechanism, Q , as shown in the following equation 

( oD is the temperature independent pre-exponential); 

 

exp( )o
Q

D D
kT

= −  (1.3.5) 

 

In general, one can separate electromigration-driven diffusion into three: Surface 

electromigration, bulk electromigration and grain boundary electromigration. The 

schematic picture of these diffusion paths can be seen in figure 1.3.2. 
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Figure 1.3.2: The diffusion paths of electromigration. 

 

The surface diffusion is the fastest one and in generally grain boundary transport is 

more rapid than interfacial or bulk diffusion. According to Lloyd (1997), the 

activation energies, E, for the pathways are in general, 

 

bulkboundarygrainsurface EEE 3
2
3

 ==  (1.3.6) 

 

Figure 1.3.3 shows the differences between wide and narrow interconnects. In a 

wide line, grain boundaries form a continuous network, and as discussed above 

diffusion on grain boundaries is faster than diffusion in lattice so the latter is 

negligible (Wang and Suo, 1996). By contrast, a narrow line has a bamboo-like 

grain structure, where grain boundaries are far apart and nearly perpendicular to the 

interconnect line direction.  

 

In addition to rounded voids, slits have been observed both in bamboo-like grain 

and single crystalline interconnects (Sanches et al., 1992; and Rose, 1992). 
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Figure 1.3.3: a) Wide and b) narrow (bamboo-like) interconnects. 

 

Void migration may be understood in terms of surface diffusion. Atoms diffuse on 

the void surface from one portion of the void to the another, so that void appears to 

translate in the grain. It has been suggested that a rounded void is unstable: the 

electric current may amplify a small asymmetry in the void shape and cause the 

void to collapse to a slit (Wang et al., 1996). There are two forces that compete to 

determine the void shape. Surface tension or “capillary forces” favours a rounded 

void, and electric current “electron wind force” favours the slit. That is under the 

electric current a void collapse to a slit. 

 

Figure 1.3.4 illustrates a void, as atoms diffuse along the internal void surface. For 

simplicity, it is assumed that the void is across the thickness h , and the conductor is 

isotropic. Both electric field and surface energy drive diffusion: 

 







 Ω+−

Ω
=

dl
d

eZ
kT

D
J

κ
γ

δ *  (1.3.7) 
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Here J  is the surface flux of atoms (the number of atoms passing per unit length 

per time), D  is the surface diffusivity, δ  is the thickness of the surface layer taking 

part in the diffusion process Ω  is the atomic volume, γ  is the surface energy, κ  is 

the curvature of the surface (positive for a rounded void), and l  is the arc length. 

 

The physical meaning of Eq. (1.3.7) is that atoms will diffuse in the direction of 

electron flow if the electric wind force dominates, but toward the position with large 

curvature if the capillary forces dominate. 

 

 

Figure 1.3.4: A narrow slit emanates from a rounded void. 

 

Subjected to an electric field, a circular void can translate in a conductor, without 

changing its shape, as atoms diffuse from one portion of to void surface to another. 

The moving circular void is a solution to Eq. (1.3.7); the surface energy does not 

drive diffusion in this situation, because the curvature is constant on the void 

surface (Ho, 1970). However, the following consideration indicates that the circular 

void is unstable when the electric field is large. The field projected on the slit 

surfaces tends to move atoms away from the slit-tip and extend the slit. The surface 

energy has to opposite effect: It tends to move atoms toward the slit tip and heal the 

slit. A dimensionless number emerges from Eq. (1.3.7) and this consideration: 
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Ω
=

γ
ρ

χ
2* JaeZ  (1.3.8) 

 

with a being the size of the void. When χ is small, the surface energy dominates, 

and the void will remain rounded. When χ  is large, the electric field dominates, and 

the slit will form (Suo, et al., 1994). It is concluded that slit-like failures will 

therefore be dominant in wide lines with large voids and/or at high current densities. 

However, this calculation did not take into account the effects of finite line width 

and the resulting current crowding with progressive void growth. Also, the 

competition with void growth is neglected, which results in a reserved current 

density dependence (Kraft and Arzt, 1997). 

 

 

1.3.1. Black’s Law 

 

If the electrons at zero fields are considered to have an entirely random motion, 

both before and after being accelerated and colliding with ions with nearly elastic 

collisions, they pass on all of their momentum to the ions. The rate of mass 

transport by momentum transfer between thermally activated ions and the electrons 

is directly proportional to the number of activated ions or targets available per cm3, 

the number of electrons per second available for striking the activated ions, and the 

momentum of these electrons. This may be expressed as: 
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)densityion  activated aluminum.(          

)section-cross  targedeffective.(          
)secondper  eunit volum a through passing electrons ofnumber .(          

)momentumelectron .(FR =

 (1.3.1.1) 

 

where R  is the rate of mass transport and F  is a constant. 

 

The additional momentum P  picked up by an electron falling through an electric 

field a distance of its mean free path l, with an average velocity v, is 

 

τρτρ jeeE
v
l

Je
v
l

eEP ====  (1.3.1.2) 

 

The average velocity v is determined mainly by the thermal velocity tv  and is 

perturbed only slightly by the drift velocity vdrift. τ  is the mean free time between 

collisions, e  is the charge on electron, ρ  is the volume resistivity, and j  is the 

current density. 

 

The number of electrons per second, which are transported through a unit volume of 

metal, is related to j  by 

 

e
j

nvN drift ==  (1.3.1.3) 

 

where n  is the electron density. 
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One may consider the number of activated ions per cubic centimeter in the metal to 

follow the Arrhenius equation as a function of temperature. Thus, 

 

Activated aluminum ion density = ( )kTeF /
1

φ−  (1.3.1.4) 

 

Where, φ  is the activation energy in electron volts, k  is the Boltzmann’s constant, 

T  is the film temperature in degrees Kelvin, and 1F  is a constant for a given metal 

and diffusion process. 

 

The median-time-to-failure in hours (MTTF) of a metal film conductor is related to 

rate of mass transfer and the conductor cross sectional area by 

 

MTTF

wtF
R f2=  (1.3.1.5) 

 

where F2 is a constant, w is the conductor width, and ft  is the film thickness 

expressed as centimeters. The film cross sectional area enters directly into this 

expression since it determines the minimum void size, which must form to cause an 

open circuit. 

 

Eq. (1.3.1.1) may be rewritten by substituting Eq. (1.3.1.2) –  Eq. (1.3.1.5) as  
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where ioniccs  is ionic scattering cross section. The first term in parenthesis on the 

right-hand side of this last equation is the force acting between conducting electrons 

and the ions, while the second term expresses the density of the activated ions as a 

function of temperature. This equation neglects the opposing force due to the 

electric field. By consolidation of the constants the Black’s Law may be expressed 

as (Black, 1969): 

 







= −

kT
AjMTTF

φ
exp2  (1.3.1.7) 

 

The constant A embodies several physical properties including, the volume 

resistivity of the metal, the electron free time between collisions or the electron free 

path and average velocity, the effective ionic scattering cross section for electrons, 

the frequency factor for self-diffusion of aluminum in aluminum, and a factor 

relating rate of mass transport with MTTF. 
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1.4. Experimental Observations 

 

Experimental observations of the failure development during electromigration 

indicate that electromigration failure is the result of complicated competition 

between growth, shape change and motion of voids (Arzt et al., 1994). The 

interaction between these mechanisms is not well understood, although several 

important attempts have been made to model such events. Void motion has been 

treated, for example by Ho (1970), with the result that small voids migrate more 

rapidly. More recently, Nix and Artz (1992) have suggested that a critical void size 

exists for which void motion is minimum; the consequence could be that larger 

voids catch up with smaller ones, moving more rapidly as they do so and resulting 

in a catastrophic mechanism of void growth and failure. As described by Børgesen 

et al., (1991) grain boundaries can trap voids until they reach a critical size. 

 

First, voids are not static but rather show motion, usually in the direction opposing 

the electron wind. This has been confirmed by several in situ scanning electron 

microscopy (SEM) on unpassivated Al lines, and field-emission SEM or scanning 

transmission electron microscopy (STEM), imaging back-scattered electrons, on 

passivated Al lines. It was also observed that voids can “heal” by breaking up into 

smaller fragments or grow by coalescing with other voids. 

 

Second, besides “classical” grain boundary diffusion, surface and interface 

diffusion can contribute to the damage development. This is suggested by in situ 

transmission electron microscopy (TEM) studies on large grained Al stripes and 

films revealing voids inside the grains. These voids had grown in the direction of 
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current flow lines, sometimes without apparently interacting with grain boundaries. 

Thinning of large regions within a single grain in an Al film during electromigration 

testing was observed. Both observations cannot be explained if the grain boundaries 

are the only diffusion paths. 

 

Third, voids do not grow in a self-similar manner, but can show significant shape 

changes. This point has been especially emphasized as a result of electromigration 

tests that were interrupted several times for damage characterization in an SEM 

(Kraft, et al., 1993). A typical void shape has been identified which appears to be 

necessary for the development of a failure site. The resulting fatal void often has a 

slit-like morphology, which gives the appearance of a crack perpendicular to the 

line. Following detailed experimental observations states that these slits frequently 

do not follow grain boundaries, as might be expected, but are transgranular. Again 

these observations indicate the necessity to consider mass transport mechanisms 

other than the grain boundary diffusion. 

 

According to damage analysis performed by Kraft and Arzt (1997) there are two 

important observations; 

 

Failure by slit-like voids, which are frequently (but not always) transgranular, is 

predominant for conductor lines with a pronounced bamboo structure. 

 

All fatal voids in lines with a bamboo or near-bamboo grain structure exhibit an 

asymmetry with respect to the electron flow direction.  
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It has been seen that this asymmetrical void shape and, in particular, the slit-like 

voids are the result of shape changes during the damage evolution. 

 

 

 

Figure 1.4.1: SEM micrographs showing a time sequence of the same site on a 

conductor line after a) 24.3 h, b) 44.5 h, c) 65.8 h, d) 131.8 h, e ) 177.2 h, and f) 

190.1 h (Arzt, et al., 1994). 
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Figure 1.4.1 shows a typical sequence of void growth in a 1.8 µ-wide line of the 

standard metallization stressed with a current density of 1.6 MA/cm2. These 

micrographs were taken during interruptions of the test. In all of these and the 

following micrographs, the direction of the electron flow is from right to left. 

 

     

 

Figure 1.4.2: SEM micrographs showing a time sequence of the same site on a 

conductor line after a) 65.8 h, b) 131.8 h, c) 177.2 h, d) 341.9 h, e ) 528.6 h, and f) 

780.6 h (Arzt, et al., 1994). 
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In figure 1.4.2, the development of another typical damage site in a different line 

during the same test is presented. 

 

Comparing the two fatal voids in figure 1.4.1-f and figure 1.4.2-g, it is striking that 

the void contour that turned against the direction of the electron flow is more or less 

perpendicular to the line (Arzt, et al., 1994). 

 

The main observations of Arzt, et al. (1994) significant for the failure mechanism, 

pertains to the fact that fatal voids have a typical slit or wedge shape with a 

pronounced asymmetry. Figure 1.4.3 illustrates this observation schematically: 

Figure 1.4.3-a shows a void with a straight cathode boundary oriented perpendicular 

to the line. An opposite boundary configuration of a fatal void (Figure 1.4.3-b) was 

never observed. Certainly in an earlier stage of void growth this shape can occur, 

but does not seem to be critical; instead the void has to change its shape in order to 

become fatal. The electron wind is expected to interact with the void shape in a way 

suggested qualitatively in figure 1.4.3: The driving force for electromigration on a 

void surface depends, to a first approximation, on the angle of this surface relative 

to electron flow. Therefore a driving force does not appear on a surface 

perpendicular to the electron flow. Following this reasoning a void with a shape 

shown in figure 1.4.3-a becomes critical, because the electromigration-induced 

mass flux from 2 to 1 is larger than from 3 to 2. Consequently, mass is removed at 

2, the void grows across the line, and causes failure. Contrary to this, a void with a 

shape as in figure 1.4.3-b should be uncritical, because electromigration-induced 

mass flux from 3 to 2 is larger than from 2 to 1. Thus the void grows along the line, 
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like the void shown in figure 1.4.4-a to c, until it changes the shape to a critical 

configuration shown in figure 1.4.4-d. 

 

 

 
Figure 1.4.3: Schematic illustration of the interaction between the void shape and 

the electron wind. a) Critical void shape, b) Uncritical void shape.  

 

    

 

Figure 1.4.4: SEM micrographs showing a time sequence on a conductor line of the 

“reflowed” film after a) 12.2 h, b) 16.5 h, c) 25.52 h, and d) 42.2 h (Arzt, et al., 

1994). 
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This simple model is also consistent with figures 1.4.1 and 1.4.2 (and many other 

observations). Figure 1.4.1 shows a void with a critical shape, which produced the 

failure without any significant shape changes. Figure 1.4.2 illustrates a void with an 

uncritical shape until one part of the void broke away and moved along the line. 

This second void finally stopped moving and grew with a critical shape at the 

expense of the other fragment, producing the open circuit. For the failure of the line 

the growth of the void to a certain size was not sufficient, the void morphological 

change was also necessary. 

 

In summary, there is a sequence of void behavior as follows: 

 

1. Void nucleation occurs at the line edge, probably where it is intersected 

by a grain boundary. Nucleation takes up only a small part of the 

lifetime. 

2. Void growth appears to be linear with time, as would be expected from 

electromigration kinetics at a constant current density. In order to 

continue growing, a void has to have a critical shape. 

3. Void motion is not always observed, but in several cases a void moved 

over some microns, opposite to the electron wind, until it became fatal. 

4. Shape change of a void is often the final step to produce the failure. It 

may take up a substantial fraction of a lifetime of a line. 

 

At least two fundamental problems pose themselves in the light of these 

observations. First, why do the voids depart from an energetically favorable circular 

shape in the first place? And second, what is the driving force behind the 



 24 

characteristic asymmetry in critical voids? The first effect could due to faceting 

because of anisotropic surface energy. The second, however, must be related to the 

electron wind. 

 

 

1.4.1. Lifetime Measurement 

 

The distribution of failure time is a critical factor for the prediction of 

electromigration reliability. The importance of correctly determining the statistical 

model governing the electromigration failure process arises from semiconductor 

manufacturing, in which the extrapolation of circuit performance to low failure 

percentage (commonly 1% or 0.1 %) is required (Christou, 1994). 

 

The lifetime measurement of conductor lines is the most commonly used method 

for evaluating electromigration resistance. The results usually follow a log-normal 

distribution and are given in terms of a median time-to failure (MTF), or t50, which 

is the time to reach a failure of 50% of a group of identical conductor lines. In order 

to obtain the result of lifetime measurement in a reasonable time frame, the 

electromigration lifetime test is carried out under a set of accelerated test conditions 

at elevated temperatures and with high current densities. The data are then 

extrapolated to the device operating conditions, which are usually at room 

temperature and with current density below 5.105 A.cm-2, by an Arrhenius-like 

empirical equation: 
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





= −

kT
AjMTTF n φ

exp  (1.4.1.1) 

 

where n  is known as the current density exponent. 

 

In the Black’s Law, given by Eq. (1.3.1.7), the exponent of the current density is 

calculated as 2− .  

 

Experimental values of the current density exponent, n , have been found generally 

in the range of 1  to 3 , but large values, such as 10 , have also been reported (Ho and 

Kwok, 1989).  

 

 

1.5. Failure Mechanisms 

 

The three predominant mechanism in electromigration failure process discussed 

here include those associated with the metallurgical-statistical properties of the 

interconnect, the thermal accelerating process, and  the healing effects. 

 

The metallurgical-statistical properties of a conductor film refer to the 

microstructure parameters of the conductor material such as the grain size 

distribution, the distribution of grain boundary misorientation angles, and the 

inclinations of grain boundaries with respect to electron flow. These metallurgical 

parameters can only be dealt with statistically because they usually appear to be 

random (Christou, 1994). 
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Figure 1.5.1: Schematic illustration of grains, grain boundaries, grain boundary 

misorientation angles, θ ’s, and inclination angles, Φ ’s. 

 

As illustrated in figure 1.5.1, the misorientation angle,θ , between the two grains 

defining the grain boundary determines the mobility of the atoms in that boundary; 

the grain boundary inclination with respect to the electron flow, Φ , partially 

determined by grain size variation, determines the effectiveness of the applied 

electric field in that grain boundary; and the grain size variation determines the 

change in the number of the atomic paths across a cross section of the interconnect. 

The variation of all these microstructural parameters over a film causes a non-

uniform distribution of atomic flow rate. Therefore non-zero atomic flux divergence 

exists at the places where the number of atoms flowing into the area is not equal to 

the number of atoms flowing out of that area per unit time (Lloyd, 1980). With the 

non-zero atomic flux divergence, there will be either a mass depletion (divergence > 

0) or accumulation (divergence <0), leading to formation of voids and hillocks. 
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Failure results either from voids growing over the entire line width that cause 

breaking of the line or extrusions that cause short circuits to neighbouring lines. 

These failure modes can be seen in figure 1.5.2. and figure 1.5.3.  

 

 

 

Figure 1.5.2: Open circuit failure (Nix, et al., 1992). 

 

 

Figure 1.5.3: Hillocking, short circuit failure (Nix, et al., 1992). 

 

The thermal accelerating process refers to the acceleration process of 

electromigration damage due to the local increase in temperature. A uniform 

temperature distribution along an interconnect is possible only before any 
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electromigration damage occurs. Once a void is initiated, it causes the current 

density to increase in the vicinity around itself because it reduces the cross sectional 

area of the conductor.  

 

The increase of the local current density is referred as the current crowding. Since 

joule heating is proportional to the square of current density, the current crowding 

effect leads to a local temperature rise around the void that in turn further 

accelerates the void growth. The whole process continues till the void is large 

enough to break the line (Sigsbee, 1973). Such a process can be seen in figure 1.5.4.  

 

 

 

 

 

 

 

 
Figure 1.5.4:  Thermal acceleration loop during electromigration. 

 

The healing effects refer to those caused by the atomic flow in the direction 

opposite to the electron wind force, the back-flow, during or after electromigration. 

This back-flow of mass begins to take place once a redistribution of mass has begun 

to form. It tends to reduce the failure rate during electromigration and partially heals 

the damage after current is removed. The cause of this back-flow of mass is the 

inhomogenities, such as temperature and/or concentration gradients, resulting from 

electromigration damage. 

Growth of voids 

Increase of Joule 
heating 

Increase of local 
current density 

Increase of 
temperature 
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1.5.1 Slit-like Voiding 

 

At the present stage of miniaturization, “bamboo” or “near-bamboo” lines, which 

consist mainly single crystals in series, are commonly present in advanced 

microelectronic devices. According the Arzt et al., (1996) the following 

mechanisms are identified during Scanning Electron Microscope (SEM) 

observations. 

 

Ø Nucleation of a void, after a certain incubation time, at the sidewalls of 

the line (most likely at a defect), 

Ø Faceting of the void surface, 

Ø Motion of the void in the direction against the electron flow, 

Ø Growth of the void, 

Ø Shape change of the void to a slit like geometry, producing the final 

failure of the line. 

 

Slit-like transgranular voids have repeatedly been found in bamboo structures and 

have prompted considerable debate on the mechanism of their formation (Sanches 

et al., 1992a; Sanches et al., 1992b; Sanches et al., 1992c; Rose, 1992). 

 

Observations of Arzt et al., (1996) show unambiguously that the decisive process is 

a shape change mechanism (and not a mechanical cracking process, as may be 

hypothesized). The mechanism of shape change must rely on diffusion along the 

void surface; it has been found to occur even without further void growth. In many 

instances slits are found to be transgranular, as has been confirmed by imaging with 
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a focused ion–beam microscope (FIM) (Sanches et al., 1992a), or with the 

transmission electron microscope (TEM) (Rose, 1992). Hence the damage process 

is many cases no longer correlated with the grain structure of the line. 

 

Several mechanisms now contribute to the failure event: void growth requires 

diffusion along the line surfaces (interfaces with surface oxide) or, less likely, along 

dislocation cores; and void motion can proceeded, like shape change. 

 

 

1.6. Bamboo Structures 

 

Demands for higher density Si integrated circuits continue to push interconnect 

dimensions to smaller sizes. When interconnect line widths are smaller than or close 

to the average grain diameter of the original continuous Al film from which the 

lines were patterned, their reliability improves, but is limited by fundamentally 

changed electromigration processes. For example, a line whose width is greater than 

the average grain diameter of the continuous film has a continuous network of grain 

boundaries. However, if the line width is similar to or smaller than the average grain 

diameter of the continuous film, some of the grains span the line width, so that the 

grain boundary path along the line is interrupted by spanning grains (bamboo 

grains). This line, a so-called near-bamboo line, consists of a mixture of 

polygranular clusters and bamboo grains. Electromigration or current-induced 

atomic diffusion occurs by grain boundary diffusion in non-bamboo lines, but 

occurs by a mixture of mechanisms in near-bamboo lines, so that lifetimes and 

failure mechanisms change in narrow lines. 
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As the level of integration increases, interconnect line widths decrease, and as hotter 

and cleaner deposition processes are used, average grain size increases. 

Furthermore, in integrated circuit processing, interconnects are subjected to 

successive high-temperature steps after patterning, such as passivation and 

packaging. During these postpatterning high temperature processes, the grain 

structure of lines evolves to more bamboo like microstructures due to grain growth 

(Joo and Thompson, 1997). All these trends have led to near-bamboo and bamboo 

microstructures common in modern interconnect materials. 

 

In near-bamboo lines, electromigration is expected to occur along at least two 

fundamentally different paths. In the polygranular clusters, atoms diffuse along 

grain boundaries; in bamboo grains, atoms diffuse through the volume of the grains. 

Electromigration induced failure mechanisms should be affected by the dominant 

diffusion mechanism. Long polygranular clusters lead to the “erosion-void” 

mechanisms observed in wide lines, in which significant atomic diffusion occurs 

along grain boundaries. Lines with predominantly bamboo grains can fail by other 

mechanisms, including the formation of the so-called slit like voids, which are very 

narrow but propagate across the lines to cause failure (Sanches et al., 1990). Slit 

like voids usually form inside a grain and not along the grain boundary (i.e., they 

are intra-granular). The formation of intra-granular voids clearly indicates that these 

voids are associated with diffusion mechanisms other than grain boundary 

diffusion.  
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1.7. Triple Junction Problem 

 

The subject of capillary-driven shape and microstructural evolution in solids still 

represents a challenging theoretical problem in materials science. It combines the 

exciting possibility to make quantitative prediction about the behavior of real 

material as diverse as, sapphire and ice, with the elegancy of the fundamental laws 

of physics. The importance of this subject for materials science is connected with 

the fundamental role of surfaces and heterophase boundaries in physical and 

chemical processes in solids, in stability of structure and properties of materials. 

Wetting, sintering, grain growth, grain boundary grooving, growth of thin films, and 

stability of multilayer, represents just a few examples. 

 

In the early fifties, this area partially put into a solid quantitative framework by the 

classical works of Herring (1951), Von Neumann (1952) and Mullins (1957) which 

strictly rely on the equilibrium thermodynamics and the Gibbs description of 

interfaces and surfaces (Gibbs, 1948; Defay et al. 1966). Mullins (1957) made the 

very first analytical study that was related to the grooving of a grain boundary 

without having the grain boundary diffusion by considering the triple junction to 

have the equilibrium capillarity configuration satisfying the Young (1805) 

relationship. Chuang and Rice (1973), Pharr and Nix (1979), and also Huang et al. 

(2000) studied very similar problem namely the creep cavity growth on grain 

boundary. They consider two coupled processes, namely the surface diffusion 

taking place on the interface separating the bulk phase from the cavity, and the 

grain boundary diffusion driven by the gradient of the normal stress acting in the 

boundary. Triple junction is the place where these two processes are coupled. The 
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boundary conditions at the triple junction are assumed to be the continuity of the 

chemical potential, the conservation of mass, and again the equilibrium capillarity 

configuration for the geometry. In the later studies by Needleman and Rice (1980), 

Pan and Cocks (1993 and 1995), Cocks (1994) and Kucherenko et al. (2000), 

exactly similar thermostatic boundary conditions were employed at the triple 

junction regardless of the nature of the numerical methods adopted by them. Most 

recently Khenner et al. (2001), have performed extensive numerical simulation of 

grain-boundary grooving by the level set method, but still utilized local 

thermodynamic equilibrium conditions at the groove roots that were earlier also 

assumed by Ohring (1971) in his analytical studies on electromigration damage in 

thin films relying on the Mullins theory of thermal grooving. 

 

These boundary conditions, as admitted by many investigators working in this field, 

are mutually incompatible at the triple junction even though they are widely used in 

their formulations relying on the validity of Herring’s relationship between the 

chemical potential and the curvature, which is itself questionable at that geometric 

singularity.  

 

At the triple junction there is no way of defining single curvature because of the 

large discontinuity due to finite dihedral angle. Therefore Herring’s relationship, 

which is valid for only smoothly variying surfaces, can not be used at the triple 

junction. 
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Continuity of the chemical potential implicitly asumes that there is a local 

equilibrium which violates the possibility of internal entropy production. However 

the triple junction motion is completely natural (irreversible) process. 

 

The driving force not only depends on the curvature gradient but also depends on 

the gradient of the gibbs free energy difference between bulk and surface layers. In 

reality this additional term becomes responsible for the growth of the void surface 

layer during the shape evolution. 

 

Takahashi et al. (1991) made similar studies on the void shrinkage process utilizing 

two different numerical but rather ad hoc models. One of them always restricts 

dihedral angle θ  to the value of the equilibrium balance. In the other model, the 

local equilibrium at the triple junction is ignored (free dihedral angle). The second 

model resulted in a bonding pressure exponent that is in agreement with the 

experimental observations, namely; the dihedral angle is not always constant and 

changes as increasing net stress is applied to the bond-interface. 

 

The triple junction steady state kinetics is also investigated recently by Gottstein 

and Shvindlerman (2002), in their studies related to the grain growth in 2D 

polycrystals by utilizing a modified version of the Von Neumann-Mullins 

relationship (2001) as a basis for the theoretical work. As a driving force for the 

triple junction mobility they assume an ad hoc connection, which may be valid only 

for the symmetrically disposed dihedral angles having an equilibrium value exactly 

equal to 3/π . Very similar problem, namely the grain boundary crack growth in 

interconnects with electric field is considered by Liu et al. (2001). They proposed 
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that one has steady state shape evolution having an equilibrium angle at the crack 

apex by further arguing that the crack apex does not constitute a point source of 

entropy production, which is actually the key point in our theory of irreversible 

processes associated with the evolution dynamics of closed curved interfaces having 

triple junction singularities. 

 

Recently non-boundary tracking methods have been increasingly applied to 

simulate complex microstructural evolutions, including the Monte Carlo methods, 

the cellular automata, and the phase field method (Mahadevan and Bradley, 1999). 

In the phase field approach the field variables governed by semi-phenomenological 

equations of motion, e.g. the Cahn-Hillard non-linear diffusion equation for the 

density field, (Cahn and Hillard, 1958), and the time-dependent Ginzburg-Landau 

equation for the long-range order parameter field (Lifshitz and Pitaevskii, 1980). 

Kazaryan et al. (1999) generalized phase field approach by incorporating the rigid-

body rotation for the computer simulation of sintering by further assuming that the 

triple junction velocity can be determined from the steady state requirement at the 

grain boundary.  

 

Triple-junction motion is also investigated by Cahn et al. (1996) for an Allen-Cahn 

/ Cahn-Hilliard system utilizing long time asymptotics (Cahn and Hillard, 1958; 

Novick-Cohen, 2001), which is still incorporated by the requirement of the uniform 

displacement. They also assumed that one has local physico-chemical equilibrium 

and continuity of chemical potentials at the junction. However the more serious 

restriction associated with the method of phase field is the utilization of symmetric 

free energy form “double well potential” which results not only equal interfacial 
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energies but also hinders the particle growth process as admitted by the author 

themselves.   

 
 
 
1.8. Methods to Improve Electromigration Resistance  

 

One of the goals in studying electromigration in thin-film conductors is to devise 

methods to improve the electromigration resistance of interconnects. In the past, 

this practical aspect of electromigration study has been emphasized, particularly 

among the industrial laboratories. As seen from the electromigration induced 

damage formation process, it is clear that the basic requirement for reducing 

damage is to minimize the local divergence of the atomic flux. This can be 

accomplished, in principle, by reducing the magnitude of the atomic flux and/or the 

inhomogeneity of the parameters controlling the mass transport (Ho and Kwok, 

1989). Since the damage process is complex in nature, methods found to be 

effective often incorporate several factors for reducing the flux divergence. 

 

The magnitude of the atomic flux is determined by the electromigration driving 

force and the grain boundary diffusivity. Thus, to reduce the atomic flux, the choice 

is to reduce the driving force and/or the diffusivity. To reduce the driving force has 

some basic difficulties since it requires either a chance in the scattering process 

responsible for the effective charge or a reduction in the current density. The 

scattering process is intrinsic, thus difficult to change. A reduction in the current 

density is not practical since the current density is dictated by device requirements 

and the tendency is to increase its magnitude for smaller devices. This leaves the 
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choice to reduce the grain boundary diffusivity. To achieve this, the most common 

approach is by solute addition although it should be emphasized that solute addition 

can contribute to the improvement by other effects, e.g. grain structure 

modification, and is not confined only to the reduction in diffusivity. The best-

known example of solute addition is the improvement of electromigration resistance 

in Al stripes by the addition of Cu (Ames et al., 1970). Other solute elements such 

as Mg, Mn and Ti have also been shown to be effective in improving the 

electromigration lifetime in Al stripes (Gangulee and d’Heurle, 1973). Solute 

elements or impurities in the thin film can reduce the magnitude of the 

electromigration flux, which has been attributed to the segregation of these 

impurities at the grain boundaries and their interaction with the migration ions. 

Since the solubility of Cu in Al is only about 0.16 at. % at 300 oC (Hansen, 1958), 

excess Cu atoms are likely to segregate at the Al grain boundaries. It was observed 

in a marker experiment (Ho et al., 1975) that Cu addition of an amount exceeding 

the solubility limit could reduce the electromigration flux of Al at the grain 

boundary. Cu also forms second-phase compound particles with Al, which serve as 

sources of Cu atoms to Al grain boundaries. 

 

Efforts in reducing the flux inhomogeneity have been focused on the modification 

of grain size and microstructure. Improvements of electromigration resistance in 

single -crystal Al stripes (d’Heurle and Ames, 1970) and in conductor composed of 

a chain of Al single-crystal grains (Herzig and Wiemann, 1974) or fabricated from 

large-grain Al films (Pierce and Thomas, 1981) have been reported. Microstructure 

modifications, such as the use of bamboo grain structure in Al (Pierce and Thomas, 
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1981) and Al-Cu (Vaidya et al., 1980; Kwok, 1987) fine lines, have also been 

shown to be effective in improving the electromigration resistance. 

 

Another approach for improving the electromigration resistance in thin-film 

conductors is to provide a cover of a protective layer called overcoat. The 

mechanism for the improvement is not well understood although it is likely that the 

overlayer alters the source or the sink condition of the free surface so as to reduce 

the rate of supplying, or annihilating, defects from the surface to the grain 

boundary. The increase in electromigration lifetime in Al stripes with a layer of 

glass was first reported by Black (1969). In general, the electromigration lifetime of 

most conductors increases by about an order of magnitude when covered with a 

glass passivation layer (Ho and Kwok, 1989). 

 

A combination of solute addition and structure modification has been used to 

improve the electromigration resistance of Al and Al-Cu fine lines. The method is 

to incorporate an al-transition metal intermetallic sandwich layer in the conductor, 

either in the middle or as top and bottom layers (Howard and Ho, 1977). The 

improvement in the electromigration lifetime was found to be 50 – 100 times 

(Howard et al., 1978). The intermetallic layer was formed by reacting Al with a thin 

layer of a transition metal, e.g. Cr, Hf or Ti. These transition elements have been 

found to serve several purposes. First, they reduce the electromigration rate of Al. 

second, the intermetallic layer was found to serve as a barrier to prevent the linkage 

of voids formed in the top and the bottom Al - Cu layers. And third, it modifies the 

microstructure in the top and bottom Al - Cu layer, e.g., to induce a columnar grain 

structure, thus reducing structural divergent sites for damage formation (Kwok et 
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al., 1984). A similar approach has been found bay Gardner et al. (1985) in a later 

study to be effective in improving the electromigration resistance of Al lines. 
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CHAPTER 2 

 

IRREVERSIBLE THERMOKINETIC THEORY OF 

SURFACES & INTERFACES 

 

2.1. Introduction 

 

As entirely discussed in Chapter 1.7, up to now all the theoretical studies related to 

the interfaces and surfaces, which are reported and cited in the literature, are strictly 

relying on the classical thermodynamics as a general tool for the macroscopic 

description of physico-chemical processes with some obscure modifications in the 

concept and usage of chemical potentials, and the free energies especially in the 

presence of externally imposed force fields (electrical, magnetic, etc.) without 

considering their original strictly mathematical definitions by Gibbs (1948). The 

more serious limitation of these approaches lies in the fact that the methods are 

based on reversible processes and true equilibrium states. 

 

This chapter focuses on the irreversible or nonequilibrium thermodynamic 

treatment of the shape evolution dynamics of closed surfaces and interfaces 

composed of ordinary points and the interfacial triple junction singularities 

(Ogurtani and Oren, 2001-a). By relying only on the fundamental postulates of 



 41 

linear irreversible thermodynamics as advocated by Prigogine (1961) for the bulk 

phases, Ogurtani (2000) has obtained a compact and rigorous analytical theory of a 

network of interfaces that are interconnected by triple junctions and embedded in 

bulk phases by utilizing the more realistic monolayer model of Verschaffelt (1936) 

and Guggenheim (1959) for the description of interfaces and surfaces. A brief 

summary of Ogurtani theory on the triple junction is reported recently by Oren and 

Ogurtani (2002) in connection with their computer simulation studies on the effect 

of various combinations of grain textures on the life time and the failure 

mechanisms of thin film interconnects with bamboo structure.  

 

In this chapter, first of all, the linear thermodynamics of irreversible processes are 

introduced in section 2.2 for surfaces as well as for bulk phases using the 

conventional macro-formulation for homogeneous and isotropic close systems as a 

starting point for the local micro discrete formulation adopted in this work. In 

section 2.3 the entropy production associa ted with the virtual displacement of 

ordinary points and the singular point such as a triple junction are treated rather 

rigorously by using micro-discrete (straight) interfacial elements as a starting 

convenient mathematical tools and then passing to the continuum representation by 

applying legitimate limit procedures frequently employed in calculus. The 

generalized forces and conjugate fluxes associated with the triple junction are 

obtained in terms of the asymmetric dihedral angles and the specific Gibbs free 

energies related to the void surface layer and the grain boundary interface, 

respectively. The longitudinal and transverse displacement velocities of the triple 

junction are also deduced as a by-product of this treatment. In section 2.4 a 

universal mathematical model for the void shape evolution dynamics in the 



 42 

presence of the void – grain boundary interaction is developed by introducing a 

novel normalization and scaling procedures which completely eliminate the any 

necessity for the knowledge of the specific material properties. This unique 

formulation based upon the monolayer model of autonomous interfaces is resulted 

mathematically sound and physically plausible boundary conditions that are 

necessary and sufficient for the unique solution of the nonlinear partial differential 

equation, which dictates the kinetic behavior of voids during intragranular and 

intergranular motion. 

 

 

2.2. Irreversible Thermokinetics of Micro-Discrete Open Composite 

Systems with Interfaces 

 

The term microscopic region refers to any small two or three-dimensional region 

containing a number of molecules sufficiently large not only for microscopic 

fluctuations to be negligible but also all of the intensive properties are homogeneous 

in space. The composite system, considered here, has at least two physico-

chemically distinct domains (or phases in most general sense) separated by thin 

layers of interfaces, that are not only mutually interacting by the exchange of matter 

and energy but they are also completely open to the surroundings through the 

moving or immobile boundaries.  

 

In this theory, the general view points of Guggenheim (1957), van der Waals and 

Bakker (1928) are adopted as far as the interface between any two phases or 

domains is concerned. Namely, the interface is autonomous, finite but a thin layer 



 43 

across which the physical properties and/or the structures vary continuously from 

those of the interior of one phase to those of the interior of the other. Figure 2.2.1 

shows such a system. Since the interfacial layer is a material system with well-

defined volume and material content, its thermodynamic properties do not require 

any special definition. One may speak of its temperature, entropy, free energy, and 

composition and so on just as for a homogeneous bulk phase. The only functions 

that call for special comment are the pressure and the interfacial (surface) tension. 

 

 

Figure 2.2.1: Structure of the interface σ , which separates the phases   and α β . 

 

The total reversible work, δ ω∆ , done on a flat surface phase with micro-extent, 

indicated in terms of ∆  space-scaling operator, by variations of its volume σVd∆ , 

and area σAd∆  (keeping its material content unaltered, but stretching) is given by 

the following well known expression, assuming that the component of the stress 

tensor along the surface normal P is quasi-homogeneous in the layer and other 

transverse two components denoted by [P-Q] are equal (rotational symmetry) but 

heterogeneous (in the absence of electrostatic and other non-mechanical force 

fields),  

 

Pd V d Aσ σδ ω γ∆ = − ∆ + ∆  (2.2.1)  
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where, P  is the mean isotropic pressure in the layer, and γ  is called the surface 

tension, whose value and the location of the surface in which it acts can be uniquely 

determined by the knowledge of the transverse component of the stress tensor as 

demonstrated by Buff (1955). Its value may be given roughly by  

 

 ∫=
σ

γ
h

Qdz
0

,  (2.2.2)  

 

where, Q  is the deviatoric part of the stress tensor and σh  is the thickness of the 

surface layer and the integration is performed along the surface normal. The above 

given expression for the reversible work becomes αVdP ∆−  for a homogeneous 

bulk phase in the formulation of the first law of thermodynamics. In the 

conventional theory of irreversible processes (Prigogine, 1961 and Glansdorff and 

Prigogine, 1971), it has been postulated that the Gibbs formula, which is derived for 

the reversible changes, is also valid for irreversible processes. However in the 

present formulation, it is tacitly postulated that the differential form of the 

Helmholtz free energy in equilibrium thermodynamics has the same validity for 

irreversible changes. Mathematically this assumption is exactly equivalent to the 

Gibbs formula used extensively in standard treatment.  

 

The local anisotropic properties of the medium are now automatically embedded in 

the intensive variables, which are characterized by second order tensors or dyadics. 
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Hence the Helmholtz free energy for an open surface phase of a micro-extent may 

be written as, 

∑∑ ∆−∆+∆+∆−∆−=∆
j

jj

i

ii dAndAdVdPdTSFd σσσσσσσσσσ ξµγ  (2.2.3) 

 

where, σS∆  denotes the entropy, i
σµ denotes the chemical potential, inσ∆  is the 

number of thi  chemical species in the micro-element, jd σξ  is the extent of the 

homogeneous thj  chemical reaction taking place in the phase under consideration, 

and jAσ∆  is the affinity of the homogeneous thj  chemical reaction and is related to 

the chemical potentials and the stoichiometric numbers as defined by Th. De 

Donder et al. (1936).   

 

In above relationship, it is assumed that, in a single phase only the homogeneous 

chemical reactions take place and the phase transitions occurring at the mobile 

boundaries are not considered in the last term. The Helmholtz free energy change 

due to the passage of the substance i  from the phase to the surroundings is 

accounted by the fourth term in above expression (frozen chemical reactions). 

Therefore, in the case of a close system, one should subtract only the term given by 

∑ ∆
i

ii nd σσµ , which is closely related to the direct exchange of matter with the 

surroundings.  

 

For the bulk phase, b , ( )  or α β , one may rewrite very similar expression namely, 
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∑∑ ∆−∆+∆−∆−=∆
j

j
b

j
b

i

i
b

i
bbbbbb dAndVdPdTSFd ξµ  (2.2.4) 

In the case of a composite system as defined previously, the total Helmholtz free 

energy differential can be immediately written down from Eqs. (2.2.3 and 2.2.4) by 

using the fact that the extensive thermodynamic quantities are additive. If there 

would be thermal, hydrostatic and physico-chemical equilibrium in the multi-phase 

system with plane interfaces there is no need to add subscripts to iPT µ and  , ; there 

must have values uniform throughout the various phases (bulk and surface) present 

in the system. For the present non-equilibrium case, first it will be assumed that no 

such restrictions on the system, but later a system at thermal equilibrium will be 

treated. For the present problem the system is an open composite system, and it is 

composed of two bulk phases (interconnect and the embedded void) and two 

surface phases (the interface between void and interconnect, and the grain boundary 

separating two different regions of the interconnect).  

 

The second principle of thermodynamics postulates the existence of a state function 

called entropy (from the Greek ευτρωπη, meaning evolution, (Prigogine, 1961)) 

that possesses the following properties, 

 

The entropy of the system is an extensive property; therefore if the system consists 

of several parts, the total entropy of the system is equal to the sum of the entropies 

of each part. 

 

The entropy of any system whether it is close or open can change in two distinct 

ways, namely by the flow of entropy due to the external interactions, exd S∆ , and by 
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the internal entropy production due to the changes inside the system, ind S∆ . 

Symbolically, one may write this as, 

 

in exd S d S d S∆ = ∆ + ∆  (2.2.5)  

 

The entropy increase ind S∆  due to changes taking place inside the system is 

positive for all natural or irreversible changes, is zero for all reversible changes and 

is never negative.  

 

For a close system external entropy contribution has a very simple definition, and it 

is given by /exd S q Tδ∆ =  where qδ  is the heat received by the system from its 

surroundings. Now, let us generalize the first law of thermodynamics for any 

infinitesimal change associated with an open system. For an open system, in which 

not only the energy but also the matter exchange takes place between the system 

and its surroundings, the conservation of energy becomes, 

 

[ ]d U d F T Sδ δ ω δ ω∆Φ= ∆ − ∆ = ∆ + ∆ − ∆  (2.2.6)  

 

where, δ∆Φ  is the energy received by the system, in terms of heat and matter 

transfer processes from the surroundings, Ud∆  is the internal energy change, and 

δ ω∆  is the reversible work done on the system by the external agents, and this 

work is equal to - VPd∆  or -[ AdVPd ∆−∆ γ ] depending upon whether one deals 

with the bulk phase or the surface phase, respectively.  
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Eq. (2.2.6) and Eq. (2.2.3 or 2.2.4) results the following formula in regards to the 

total differential of the total entropy for the phase, k  (surface or bulk phases); 

 

ji
jik k

k k
k k ki j

A
d S d n d

T T T
µδ ξ

∆∆Φ∆ = − ∆ +∑ ∑  (Total Entropy Change) (2.2.7) 

 

where the summations with respect to  i  and j  indicate summation over different 

chemical species and over different reactions taking place simultaneously in the 

same phase, respectively.  

 

The Eq. (2.2.7) can be divided into two parts, similar to the Prigogine (1961), who 

applied such a splitting procedure to the systems consist of two open phases but the 

system is closed as a whole:  

 

The first two terms of Eq. (2.2.7), correspond to the rate of external entropy flow 

term (REF): namely, 

 

1 i i
ex k k

k ki

d S d n
dt T dt T dt

µδ∆ ∆∆Φ
= − ∑  (Rate of Entropy Flow (REF)) (2.2.8) 

 

And the last term of Eq. (2.2.7), on the other hand constitutes to the internal entropy 

production term (IEP): namely, 

 

0≥
∆

=
∆

∑
j

j
k

k

j
kin

dt
d

T
A

dt
Sd ξ

 (Internal Entropy Production (IEP)) (2.2.9) 
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As one might expect that, the IEP in a single phase directly related to the chemical 

reactions taking place in the region whether it is closed or open. Only the REF is 

affected from the matter flow through the open boundary (Ogurtani, 2000). 

 

One may also write down the power dissipation, ∆Ρ , for natural changes, which is 

a very useful function, which is also known as Helmholtz dissipation function 

(Haase, 1969), for the treatment of the isothermal processes taking place in multi-

phase systems with uniform and continuous temperature distribution, and it is given 

by the following expression.      

 

0≥∆=
∆

=∆Ρ ∑ dt
d

A
dt
Sd

T
i

i

iin ξ
 (2.2.10)  

 

Inequalities given by Eqs. (2.2.9 and 2.2.10) are valid for any natural change, taking 

place in any phase whether it is bulk or surface. Only difference between these two 

expressions is that the first one is valid for any type of natural changes taking place 

in the system but the second one is restricted only for the isothermal natural 

processes. 

 

For a global composite system having discontinuous (heterogeneous) phases, there 

are two additional IEP terms, one is due to the internal entropy flow associated with 

the transfer of chemical species from one subdomain to another subdomain; and the 

other one is due to the energy transfer between the subdomains of the composite 

system.  
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This second IEP term for a composite system immediately drops out if the 

subdomains have identical temperatures. The total differential of the entropy for 

such a system is; 

 

,

, ,

i
ik k s
k s

k ki k k

ji
jik k k

k k
k k ki k k j k

d n
T T

d S
A

d n d
T T T

µ δ

µ δ
ξ

↔
↔

 ∆Ω− ∆ + 
 

∆ =  
∆∆Ω − ∆ + + 

 

∑ ∑

∑ ∑ ∑
 (Total Entropy Change) (2.2.11) 

 

where the double summations with respect to k  and i  or j  indicate summation 

over various phases (bulk or surface) and over different chemical species or 

reactions taking place simultaneously in the same phase, respectively. kδ∆Ω  is the 

amount of energy transported to the individual phase from the other phases present 

in the global system due to heat or matter exchange. In Eq (2.2.11), the subscript 

sk ↔  indicates that the matter and energy exchange takes place between the phases 

of the system, k , and the surrounding, s . 

 

By performing the splitting procedure to the Eq. (2.2.11) similar to the single-phase 

systems: The REF from the surrounding to an open composite system may be 

written as, 

 

,

1i i
ex k k s k s

k ki k k

d S d n
t T t T t

µ δ
δ δ δ

↔ ↔∆ ∆ ∆Ω
= − +∑ ∑   (REF) (2.2.12) 

 

 



 51 

and the IEP due to the irreversible processes:  

 

, ,

1 j ji i
in k k k k k

k k ki k k j k

A dd S d n
t T t T t T t

ξµ δ
δ δ δ δ

∆∆ ∆ ∆Ω
= − + +∑ ∑ ∑  (IEP) (2.2.13) 

 

On the other hand the first term contributes to IEP of a composite system as long as 

one has chemical potential differences between respective sub-domains regardless 

the transfer process isothermal or not.  

 

A comparison of the IEP expressions, for the single-phase system, Eq. (2.2.9), and 

the composite system, Eq. (2.2.13), immediately shows us that the internal entropy 

production IEP is not an additive property of a thermodynamic system composed of 

interacting open sub-systems unless the whole system is in complete physico-

chemical equilibrium state (uniform temperature and chemical potential 

distributions). 

 

At the onset, it should be clearly stated that in the case of an open composite system 

having only homogeneous chemical reactions with inactive external boundaries (no 

chemical reaction or phase transition occurring there) any ordinary exchange of 

matter and/or energy with its surroundings only contributes to the total entropy flow 

term, and it is noting to do with the IEP. 
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2.3.  Irreversible Thermokinetic Theory of Voids with the Triple Junction 

Singularities 

 

Before using the concepts developed in the previous section let us define the system 

under consideration. Figure 2.3.1 shows the void – grain boundary – interconnect 

system, namely the void nucleated on the grain boundary that separates interconnect 

into two different subdomains. 

 

 

 

Figure 2.3.1: The void-grain boundary-interconnect system. 

 

In the formulation of the problem through the evaluation of the internal entropy 

production, IEP, and the external entropy flow, REF, terms associated with the 

boundary displacement, no assumption is made in regards to the kinetics of the 

growth process other than the conservation laws and the fundamental postulates of 

linear irreversible thermodynamics. Considering the closed curved interfaces in 

two-dimensional space, or the general cylindrical surfaces in three-dimensional 

space, let us obtain the formulas necessary to describe the void motion.  
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2.3.1. Ordinary Point Motion Along the Surface Normal 

 

 

Figure 2.3.1.1: Ordinary point motion along the void surface normal. a) Macro-

structure, b) Micro-structure. ABC: void interfacial layer and δη : virtual 

displacement of the ordinary point along the void surface normal.  

 

During the derivation of the formula for the global IEP associated with the arbitrary 

virtual displacement, ηd , of the interfacial loop of a finite thickness, which 

separates the void, denoted by v , from the interconnect, denoted by b , having 

multi-components, one has to integrate the rate of local entropy density change 

along the curved interface in order to obtain desired connection between 

generalized forces and conjugate fluxes. The rate of local entropy density change is 

the only quantity, which has the additive property that allows to be integrated. 

Therefore, not only the local internal entropy production (source term), but also the 

external entropy flow term should be evaluated for the virtual displacement. 
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i. Internal Entropy Production 

 

The IEP of an open composite system is given by the Eq. (2.2.13). As far as the 

void – interconnect surface layer is concerned, it is assumed that the whole system 

is in thermal equilibrium, T , and there is no insitu chemical reactions is taking 

place. These assumptions drop out the second and the third terms of Eq. (2.2.13), as 

discussed before. Then the only non-vanishing term of IEP, which represents an 

additional contribution in the composite system due to internal entropy flow 

associated with the transfer of chemical species from one sub-domain to another 

sub-domain, is given by, 

 

∑
∆

−=
∆

ji

i
ji

j
in

t

n

Tt
S

,

1
δ

δ
µ

δ
δ

 (2.3.1.1) 

 

Double summations with respect to i  and j  indicate summations over different 

chemical species and over various phases ( σ and  , vb ), respectively. 

 

Now, let us calculate the internal entropy variation for the left hand side sub-system 

when the ordinary point moves along the surface normal with a distance +δη . From 

figure 2.3.1.1, one immediately finds the following variational relationships among 

various quantities by assuming that: ++ >>∆ δηl  and −− >>∆ δηl ; 
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+++ =∆ θδηδ cosl       and  +++ = θδηδ sinH   (2.3 1.2) 

++++ ∆
Ω

−=∆ δηθδ sin
2

1
l

b
bn     (2.3.1.3) 

++++ ∆
Ω

=∆ δηθδ sin
2

1
l

v
vn  (2.3.1.4)  

+++

Ω
=∆ δηθδ

σ

σ
σ cos

h
n   (2.3.1.5) 

 

where vb   and   ΩΩΩ ,σ  are the mean atomic specific volumes, associated with the 

void surface layer, bulk and void phases, respectively. +∆l  and −∆l  denote 

segment lengths of the void surface layer just next to the ordinary point right and 

left hand sides, respectively. σh  is the thickness of the surface layer and assumed to 

be invariant. +∆ vnδ  and +∆ bnδ  are the number of atoms gain in the reaction zones 

associated with the void – interfacial layer and the bulk – interfacial layer 

respectively, while the transformation processes are taking place there during the 

virtual displacement of the interfacial layer. +∆ σδ n  is equal to the net atomic gain by 

the interfacial layer denoted by σ  due to enlargement (extension without 

stretching) of that layer during the displacement operation. δ  and ∆  are variational 

and micro-discretization operators, respectively.  

 

One can obtain exactly similar expressions for the other side of the ordinary point, 

which will be identified by a negative sign as superscript in the following formulas: 
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−−− =∆ θδηδ cosl       and  −−− = θδηδ sinH   (2.3.1.6) 

−−−− ∆
Ω

−=∆ δηθδ sin
2

1
l

b
bn     (2.3.1.7) 

−−−− ∆
Ω

=∆ δηθδ sin
2

1
l

v
vn  (2.3.1.8)  

cos
h

n σ
σ

σ
δ θ δη− − −∆ =

Ω
  (2.3.1.9) 

 

Also, one should recall that in the case of multi-component system, the variations in 

the number of atomic species could be easily obtained by simply multiplying the 

total atomic number variations by the respective atomic fractions denoted by i
jx . As 

an example, the number of chemical species involved in the left and right hand side 

bulk phases due to the virtual displacement may be given by 

 

++ ∆=∆ j
i
j

i
j nxn δδ  (2.3.1.10) 

and 

−− ∆=∆ j
i
j

i
j nxn δδ  (2.3.1.11) 

 

Then, one can write down the rate of entropy production due to ordinary point 

virtual displacement along the void surface normal for the left as well as for the 

right hand side domains; 
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  (2.3.1.13)  

 

where, /hσ σ σΓ = Ω  corresponds to the specific mean atomic density associated 

with the void surface layer. 

  

In above relationship, the special superscript + or - has been employed above the 

atomic fractions as well as the chemical potentials in order to indicate explicitly that 

those quantities may depend upon the orientation of the local surface normal. One 

should also recall that for the multi-component surface phases, ii
σσ µ∑Γ  is exactly 

equal to the specific Gibbs free energy density associated with the interfacial layer. 

This may be denoted by σg . Here, ii xσσσ Γ=Γ , is by definition known as the 

specific surface concentration of chemical species in surface layer. 

 

The terms appearing in the first group on the right side of Eq. (2.3.1.12) and 

(2.3.1.13) such as, ∑ Ω
i

b
i
b

i
b /µχ  and ∑ Ω

i
v

i
v

i
v /µχ  are the volumetric Gibbs free 

energy densities. These quantities are denoted by bg
(  and vg

( , and associated with 

the bulk phase and void region having their own instantaneous compositions just 
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next to the hypothetical geometric boundaries of the interfacial layer (reaction 

fronts or zones). Furthermore, these quantities are related to the specific Gibbs free 

energy densities by the relationship: σσσ ghg
(

= .  By using these definitions the 

following equations are obtained, 
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The total internal entropy production is: 
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where )( bvvb ggg
(((

−= , and it corresponds by definition to the volumetric density 

of Gibbs Free Energy of Transformation (GFET) (negative of the affinity of an 

interfacial reaction such as condensation or adsorption, vbg >0 ) associated with the 

transformation of the bulk phase into the realistic void phase, which contains 

chemical species even though they are present in a trace amount. In the case of 

thermostatic equilibrium between a void phase and an adjacent bulk phase, GFET 

becomes identically equal to zero, if the reaction front would be a flat interface. 
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There is a very simple connection between this quantity GFET and the Specific 

Gibbs Free Energy of transformation between the parent phase and the void phase 

that may be given by σhgg vbvb
(

= .  By dividing both sides of the Eq. (2.3.1.16) by 

l∆ , it is obtained that, 
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   (2.3.1.17)  

 

Now if one applies the limiting procedures such as; first with respect to 0→tδ , 

and then 0→∆l , and recalls the definition of the local radius of curvature,κ , 

which is given by; 
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and also keeps in mind that 
20

π
θ =±

→∆l
lim , vbvbvb ggg ((( == −+  and σσσ ggg == −+ , 

one immediately obtains the following continuum relationship for the IEP,  

 

( )
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dgg

Tdt
Sd

vb
in ηκσ+−=

∆ (1ˆ
  (erg/oK/cm/sec)  (2.3.1.19) 

 

where dtSd in /ˆ∆  is the surface density of IEP associated with ordinary points. 
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ii.  Rate of Entropy Flow 

 

Similarly, the external entropy accumulation in the surface phase due to flow of 

chemical species, i , along the surface layer, iJσ , and the perpendicular incoming 

flux intensities from the bulk, i
bĴ , and the void, i

vĴ , phases, can be calculated by 

using the law of conservation of entropy without the source term or IEP.  

 

 

 

Figure 2.3.1.2: Structure of micro-composite system. 

 

From figure 2.3.1.2 it can be written as, 
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where, vĴ  and bĴ  are the total atomic flux intensities is such directions that they 

are perpendicular and oriented towards the interfacial layer, just at the reaction 

fronts between the void  and the interfacial layer and the bulk phase and the 

interfacial layer, respectively. 

 

By remembering the definitions of the volumetric Gibbs free energy densities, kg
( , 

given by ∑ Ω
i

k
i
k

i
kx /µ , where k  represents the different phases, and keeping in 

mind that the global system is in thermal equilibrium, Eq. (2.3.1.20) can be 

rewritten as: 
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where ˆ /exd S dt∆  is the surface density of REF associated with ordinary points. 

 

In this formula it is also assumed that the mean atomic specific volumes of the bulk 

and the void phases are nearly equal to that of the interfacial layer. 

 

 

iii.  The Local Rate of Change in the Entropy Density 

 

The total entropy production has to be calculated since only this term has the 

additive property that will be used to calculate the total entropy production of the 
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whole void surface layer under isothermal condition by a path integration 

procedure. By using Eqs. (2.3.1.19 and 2.3.1.21); 
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In order to calculate the global rate of entropy change of the whole curved 

interfacial layer, which is between the void region and the bulk phase, let first take 

the line integral of Eq. (2.3.1.22) all along the closed curved interface, represented 

by C , excluding possible singularities such as a triple junction, which may be 

situated at a point denoted by the open interval ( )εε +− , , where 0→ε . This 

interface is represented by oC and equal to ( )εε +−− ,C . 
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  (2.3.1.23) 

 

In the absence of the particle source and sink terms, the atomic flux divergence is 

proportional with the amount of mass accumulated or depleted on an interfacial 

layer, which causes the interface to move in a local normal direction. However in 

this formulation a more general situation, namely, the additional entropy source 

terms associated with the normal components of the atomic flows coming from the 
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bulk phase, and the void region due to condensation or evaporation processes that 

may be summarized by, vbbv JJJ ˆˆˆ += , is considered. Hence, the following 

expression can be written for the conservation of atomic species during the virtual 

displacement of curved interface having no stretching and thickness variations: 
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where, σccc vb  and  ,  are the atomic volumetric concentrations associated with the 

bulk, void and surface phases, respectively.  Now if one considers the following 

plausible and highly accurate approximations for a realistic void, which may be 

treated as polyatomic dilute gas, such as: 0  and  0 == κσhcv . One would get the 

following results using the fact that 1−=Ω bb c , which is mostly adapted in the 

literature (Guggenheim, 1959 and Ogurtani and Oren, 2001-a): 
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where, rn
rr

 and  are the surface normal and the position vectors, respectively.  

 

Now, let us substitute above identity into Eq. (2.3.1.23), and also remember that it 

is assumed that the mean atomic specific volume of the bulk phase is nearly equal 

to that of the interfacial layer. 
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In order to apply the integration by parts let us write Eq. (2.3.1.26) in the following 

form, 
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The first group of terms on the right side of the Eq. (2.3.1.27) can be integrated by 

parts, as shown below; In order to save the space the left side of the equation are not 

shown in the following two equations. 
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After some manipulations and rearrangements, 
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 (2.3.1.29) 

 

At the final step after the integration by parts procedure, one should carefully split 

the global rate of entropy change into two parts, namely the REF term and the IEP 

term by carefully inspecting the individual contributions in Eq. (2.3.1.29). 
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where, the first term is the integrated entropy flow to the void interfacial layer from 

the embedding parent phases through the incoming matter flux, bvĴ . In the same 

way the last two terms represents the rate of entropy injection, entering and leaving 

to the interfacial layer at the triple junction singularity respectively. 

 

The remaining terms of Eq. (2.3.1.29) are related to the IEP and given by, 
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This original results clearly confirms that the bulk flow of particles or substances 

for nonviscous systems appears to be a reversible phenomenon as first discovered 
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by Prigogine (1961), in another content using the velocity of the centre of gravity as 

a reference system in the calculation of the possible singularity. In the absence of 

this singularity, the last two terms of Eqs. (2.3.1.30 and 2.3.1.31), become 

identically zero and drop out completely.  

 

Here it should be clearly stated that the singularities have to be treated individually 

as a special case, where the discrete formulation of irreversible thermodynamics as 

suggested and developed by Ogurtani (2000), may be a very powerful tool to handle 

this problem successfully, as it will be shown in the next section. 

 

After these mentioned drop outs, the following formula obtained for the IEP 
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Before proceeding further, let us turn back to postulates of irreversible 

thermodynamics: As shown by Prigogine (1961), the internal entropy production of 

the irreversible processes can be written as a sum of the products of generalized 

forces or affinities and the corresponding rates or generalized fluxes, 
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By utilizing this postulate, which means by comparing the Eqs. (2.3.1.32 and 

2.3.1.33), one obtains the following forces from the integrated IEP expression 

(2.3.1.32), which is valid for any arbitrary closed loop. 
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where, vbs FF  and  denote longitudinal and transverse generalized forces that are 

acting on the interfacial layer respectively.  

 

If one considers the additional contributions due to external forces, denoted by extF
r

,  
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and 
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Here nt
rr

 and  denote unit tangent and normal vectors at the void surface. The 

external forces were discussed by Ogurtani and Oren (2001-a) in Appendix B of 

that reference for various kind of external forces, such as electrostatic, elastostatic 

and magnetic in nature.  
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Here only the electrostatic external forces will be discussed. The external 

generalized forces per particle, i , associated with electromigration is given by, 

 

i
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em
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 (2.3.1.38) 

 

where, ϑ  is the electrostatic potential and ieZ  is the effective charge of the particle 

i .  The external generalized total force density (per unit volume) associated with 

electromigration and acting on particles may have the following form for a multi- 

component system whether it is a bulk phase or an interfacial layer, 
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 (2.3.1.39) 

 

where, *eZ is the effective charge in multi-component systems. 

 

The last contribution in Eq. (2.3.1.37), extFn
rr

⋅ , becomes identically zero since the 

normal component of the electric field intensity vanish at the void surface. 

 

Then, according to the Onsager theory (de Groot, 1951 and Prigogine 1961), which 

connects generalized forces and conjugate fluxes through generalized mobilities, the 

conjugate fluxes associated with the above forces can immediately be written down, 

by neglecting the cross-coupling terms between generalized forces and fluxes, as: 
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where, kk vb / and  / ΜΜσ  are the generalized phenomenological mobilities 

associated with the respective conjugated forces and fluxes, *eZ  is the mean 

value of the effective electromigration charge associated with the interacting species 

and k  is the Boltzmann’s constant. 

 

For multi-component systems, where one is interested only in the net atomic (mass) 

transport regardless to the contributions of individual chemical species, the first 

generalized-mobility, σΜ , may not be easily connected to any combination of the 

intrinsic surface diffusivities of individual chemical species in the interfacial layer 

or in the bulk phase. However, for one component system having minor amount of 

doping elements or impurities, the situation is rather simple where one can easily 

identify the existence of the following relationship between generalized mobility 

and the surface self-diffusivity of host matter denoted by σD
~

, 
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Hence, for the future discussions, the following compact form will be used, which is 

more suitable to take other driving forces such as the electromigration drift motion of 

surface atoms into considerations: 
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 (Surface Flux) (2.3.1.43) 

 

where σΜ̂  may be called surface atomic mobility, and it has the dimension given by 

( ) 1sec. −erg .  

 

The generalized mobility, vbΜ ( )sec/2cm , associated with the incoming bulk 

diffusion flux is related to the transformation rate of chemical species from bulk 

phase to the interfacial layer or vice versa over the activation energy barrier denoted 

by vbG∗∆ . Hence, it can be defined according to the transition rate theory of chemical 

kinetics advocated by Eyring (Yeremin, 1979), as: 
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In the future formula one will use rather normalized mobility, which may be 

defined by kTvbvb /ˆ Μ=Μ , which has the following dimension ( ) 12 .seccm erg − .   
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Before giving the mathematical model for the evolution dynamics of void 

intergranular motion, the formulas that govern the dynamical behavior of triple 

junction singularity have to be discussed, as will be done in the next section. 

 

 

2.3.2. Triple Junction Motion  

 

In this section, it is shown that the dynamical behavior of triple junction may be 

derived as a special case of triple junction singularity by lifting certain geometric 

constraints on the system and the existence of  grain boundary. 

  

As far as the kinetic behavior of a triple junction is concerned it is assumed that, the 

whole system is in thermal equilibrium and no insitu chemical reaction is taking 

place other than the phase transformation occurring between void interfacial layer 

and the grain boundary region. This last point, which is closely connected with the 

entropy point source term, up to now, is completely omitted in the literature (Rice 

and Chuang, 1951) in the formulation of conservation of species in terms of flux 

balance at the triple junction. 

 

In the present theory the sampling domain is a very small composite discrete open 

micro-system, which is eventually localized into a point of singularity, and situated 

just in the immediate neighborhood of the junction as illustrated in figure 2.3.2.1. 

This selected composite micro-system is also connected to the neighboring micro-

discrete elements by nodes where the exchange or the flow of matter only 
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contributes to the rate of entropy flow but nothing to do with the internal entropy 

production. 

 

 

Figure 2.3.2.1: Triple junction micro-system. 

 

In this section, first the individual IEP due to small but finite virtual displacement of 

a triple junction along the grain boundary is calculated. The sampling region at the 

triple junction is divided into two sub domains by passing a line, which separates 

the grain boundary region into two symmetrical parts. This dividing operation 

means that the IEP resulting from such a displacement of triple junction along the 

grain boundary can be separately and independently treated for the left and the right 

hand side domains, because of the lateral constraint on the grain boundary motion. 

However at the later stage, the IEP associated with the virtual displacement of the 

triple junction for the whole system will be also calculated. Namely, along the 

parallel and perpendicular directions with respect to grain boundary orientation, by 

lifting the constraint on the triple junction motion. 
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i.  Triple Junction Longitudinal Motion 

 

Figure 2.3.2.2: Triple Junction Longitudinal Motion. a) Macro-structure b) Micro-

structure. BB ′ : grain boundary, ABC: void interfacial layer and δη : longitudinal 

virtual displacement of the triple point along the grain boundary. 

 

Now, similar to the IEP calculation for the ordinary points, let us calculate the 

internal entropy variation for the left hand side sub-system when the triple junction 

moves along the grain boundary with a distance +δη . From figure 2.3.2.2, one 

immediately finds the following variational relationships among various quantities 

by assuming that: ++ >>∆ δηl  and −− >>∆ δηl ; 
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where, gΩ  is the mean atomic specific volume of the grain boundary phase  and 

gh  is the thickness of the grain boundary region and assumed to be invariant. Even 

though some of the variables have already been described during the IEP evaluation 

for the ordinary points, let us discuss all the variables as follows: +∆ vnδ  and +∆ bnδ  

are the number of atoms gain in the reaction zones associated with the void – 

interfacial layer and the bulk – interfacial layer respectively, while the 

transformation processes are taking place there during the virtual displacement of 

the interfacial layer. +∆ gnδ  is the total number of atoms gained by the half of the 

grain boundary during triple junction motion. Similarly, +∆ σδ n  is identically equal 

to the net atomic gain by the interfacial layer denoted by σ due to enlargement 

(extension without stretching) of that layer during the displacement operation. δ  

and ∆ are variational and micro-discretization operators, respectively. Eventually, 

by using a set of novel limiting procedures of calculus, they will be replaced by 

exact differential, and zero that corresponds to the infinitesimal volume or better to 

say to the singularity associated with the triple junction. One can obtain exactly 

similar expressions for the other side of the triple junction, which will be identified 

by a negative sign as superscript in the following formulas: 
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The Internal Entropy Production (IEP) generation can be calculated for any 

arbitrary virtual displacement of the triple junction along the grain boundary by 

applying the only non-vanishing term of Eq. (2.2.13), as discussed before.  

 

One can then write down the rate of entropy production due to triple junction virtual 

displacement for the left as well as for the right hand side domains using Eqs. 

(2.3.2.1-5 and 2.3.1.1) and Eqs. (2.3.2.6-10 and 2.3.1.1), respectively. In the case of 

left hand side the following equation can be obtained: 
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  (2.3.2.11)  

 

and in the case of right hand side the following equation can be obtained: 
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  (2.3.2.12)  

 

By using the definitions, which were discussed in the previous section, the 

following equations are obtained from the Eqs. (2.3.2.11 and 2.3.2.12). 
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By taking consecutive limiting procedures such as; first with respect to 0→tδ , and 

then 0→∆l , one immediately obtains the following differential equations 

representing IEP associated with the virtual displacement of the left and right sides 

of the triple junction singula rity, 
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On the left sides of above expressions, the ∧ symbol has been tacitly employed to 

emphasize that these entropy production terms are line source in three-dimensional 

space, due to the fact that cylindrical voids are treated in this formulation. The 

superscripts have been also employed over the specific Gibbs free energies to 

indicate that those quantities may depend upon the orientation of the local surface 

normal vector.  

 

Finally, a local set of discrete microelements in the vicinity of the triple junction, 

which includes both domains mentioned previously, can be chosen. The entropy 

production for the combined system can be easily calculated using Eqs. (2.3.2.13) 

and (2.3.2.14) for the virtual displacement of the triple junction along the grain 

boundary. The result is as follows:  
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which yields IEP due to longitudinal displacement of the triple junction along the 

grain boundary, after applying the consecutive limiting procedures as described 

previously,  
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where )( bvvb ggg ((( −= , and it corresponds by definition to the volumetric density 

of Gibbs Free Energy of Transformation (GFET) (negative of the affinity of an 

interfacial reaction such as condensation or adsorption, vbg >0 ) associated with the 

transformation of the bulk phase into the realistic void  phase which contains 

chemical species even though they are present in a trace amount. In the case of 

thermostatic equilibrium between a void phase and an adjacent bulk phase, GFET 

becomes identically equal to zero, if the reaction front would be a flat interface. 

There is a very simple connection between this quantity GFET and the Specific 

Gibbs Free Energy of transformation vbg  (evaporation or desorption, vbg <0 ) 

between the parent phase and void phase that may be given by σhgg vbvb
(= . 

 

Since the entropy production can be split in several ways into fluxes and forces as 

clearly demonstrated by De Groot (1951); there is a certain freedom exists in the 

choice of fluxes and forces. The first set of forces and fluxes that is employed by 

Ogurtani and Oren (2001-a) in connection with ordinary points along the void 

surface layer and also as demonstrated in the previous section, is more or less 

thermodynamical in nature. However, the interpretation of these forces is rather 

abstract and they may be also called as the affinities in the field of irreversible 

thermodynamics. On the other hand, the second set can be easily understood in 

terms of ordinary drag force  versus velocity concept, and their physical 

interpretation is rather straight forward, but its validity is rather restricted to the 

systems that are in complete thermal equilibrium and the processes are isothermal. 

Since it has been assumed on the onset that there is a thermal equilibrium in the 

system, it may be rather used a direct and more plausible approach for the triple 
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junction singularity, namely the concept of power dissipation in the close sense of 

classical mechanics, and sometimes it is called Helmholtz dissipation function 

(Haase, 1969). This concept is also advocated and extensively used by Ogurtani and 

Seeger (1983), in the general formulation of internal friction and dislocation 

damping phenomenon associated with atomic hopping motions in discrete body 

centered cubic lattice, that is exposed to the interaction fields which are 

inhomogeneous in space and fluctuating in time. The power dissipation function is 

simply given by the internal entropy production multiply by the temperature for an 

isothermal system, and for the present case obviously it is identically equal to 

driving force velocity product, namely: 

 

0
ˆ

≥=
±

±
±

dt
d

F
dt
Sd

T in η)
  (erg/cm/sec)  (2.3.2.19)  

 

Hence by comparing this expression with Eq. (2.3.1.15), one can immediately 

deduce the generalized force for the left side, 
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
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2
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F g)

  (dyne/cm)  (2.3.2.20)  

 

and similarly by comparing the Eq. (2.3.2.19) with Eq. (2.3.2.16) and giving 

attention to sign convention in figure 2.3.2.2 one can write down an equivalent 

expression, for the right side; 
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





−−= −−− θσ cos

2
g

g
F g)

  (dyne/cm) (2.3.2.21) 

 

These generalized forces are associated with the net material flow during the triple 

junction longitudinal displacement along the grain boundary without making any 

distinction between intrinsic fluxes related to the individual chemical species. They 

are also given in terms of per unit length, because in the formulation of the IEP, a 

sample of unit length in thickness is chosen, and in addition the void surface is 

assumed to be an arbitrary cylindrical in shape. In the phenomenological 

relationship between velocity and force, one may prefer to use the force acting on a 

single atomic particle. Therefore above expressions for generalized forces should be 

multiplied by an atomic length, ad , which may be taken as equal to the inter-atomic 

distance along the sample thickness. Hence, the connection between the triple 

junction velocity and the atomic generalized force can be now written by 

introducing the phenomenological longitudinal mobility coefficient kTlong /ℜ ,  
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and 
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where, the same mobilities for both sides are employed. One can now immediately 

formulate the atomic fluxes coming from the triple junction towards the both sides 

of the void surface layer. These are simply given by the number of atoms present in 
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a volume swept by the triple junction motion along the grain boundary per unit 

time, and plus the incoming grain boundary atomic flux gĴ (# /cm.sec) associated 

with the long-range drift-diffusion. The velocity of the triple junction is 

proportional with the net flux accumulated or depleted at the junction. Hence, one 

writes the following expressions; 
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Using these expressions in with Eqs. (2.3.2.22) and (2.3.2.23) for the triple junction 

velocities, one gets immediately the following generalized conjugate fluxes: 
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and  
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 (2.3.2.26) 

 

where one takes the sample thickness as one unit length, and also considers the right 

and left sub-domains separately by splitting the grain boundary diffusion flux 

equally. At this stage one can immediately write down the expression for the 

velocity of the triple junction either directly from Eq. (2.3.2.18), or applying the law 
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of conservation of species to the displacement motion of triple junction, and 

utilizing Eqs. (2.3.2.25) and (2.3.2.26) for the out-going fluxes from the 

transformation front: 
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 (2.3.2.27) 

  

In above flux relations, −λ  and +λ  are very important parameters which may be 

assumed to be constant and equal especially in the case of isotropic behavior of 

surface phases. They may be called as the wetting parameters and are given by the 

following expressions:  

 

−
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σ
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g

gg

2
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σ
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 (2.3.2.28) 

 

The specific Gibbs free energy of the void surface layer may depend on the 

orientation of the local surface normal due to the anisotropic behavior of the surface 

tension γ and/or the specific Helmholtz free energy itself in crystalline solids (Defay 

et. al., 1966). 
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In above expressions, a phenomenological mobility coefficient have been 

introduced and denoted by longℜ , which may be called as the reaction rate constant 

associated with the phase transformation denoted symbolically by gb⇔σ . For the 

present case, it refers a transformation, which takes place continuously and 

reciprocally between two surface phases, namely, between the interfacial layer and 

the grain boundary region just at the triple junction. This phenomenological 

mobility does not make any distinction between individual chemical species and 

their rate of transfer over the activation energy barrier. It is strongly dependent on 

the temperature, and that may be formulated according to the activated complex rate 

theory of chemical reactions (Yeremin, 1979) as follows: 
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In above expression *
,gGσ∆  is the Gibbs free energy of activation for the 

transformation of surface phase, σ , into the grain boundary phase, g , or vice versa. 

Eqs. (2.3.2.22 and 2.3.2.23) clearly show that in the case of thermostatic 

equilibrium at the triple junction, the displacement velocity becomes identically 

equal to zero regardless of the magnitude of the grain boundary flux. Thermostatic 

equilibrium establishes when the dihedral angles have reached those values, which 

make generalized forces given in Eqs. (2.3.2.20) and (2.3.2.21) identically equal to 

zero, under the assumed constrain on the triple junction, namely no lateral motion is 

possible. Similarly in above equation, the fluxes associated with the void surface 

diffusion, they may go through certain modifications in the case of anisotropic 
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behavior of the void surface layer as demonstrated by Ogurtani and Oren (2001-a) 

and Oren and Ogurtani (2002). In the case of isotropic specific Gibbs free energies 

above equation may be written in the following form by utilizing Eq. (2.3.2.27) and 

the dimensionless parameter λ, which is given by )2/( σλ ggg= .  

 

( )[ ]−+ +−
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= θθλσ coscos2
2kT

gd
v a

long
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g  (cm/sec) (2.3.2.30)  

 

After obtaining the triple junction longitudinal velocity, let us first calculate the 

triple junction transverse velocity and then reapplying the constraint on the grain 

boundary, that is the grain boundaries are immobile, calculate the fluxes necessary 

to establish the thermostatic equilibrium at the triple junction. 

 

 

ii. Triple Junction Transverse Motion 

 

Using the technique, developed in the previous sections, the internal entropy 

production associated with the transverse virtual displacement of the triple junction, 

namely the motion perpendicular to the grain boundary, can be calculated. 

 

The internal entropy variation for the left hand side sub-system when the triple 

junction moves perpendicular to the grain boundary with a distance +δη  can be 

calculated from figure 2.3.2.3, 
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Figure 2.3.2.3: Triple Junction Transverse Motion. a) Macro-structure b) Micro-

structure. BB ′ : grain boundary, ABC: void interfacial layer and δη : transverse 

virtual displacement of the triple point along the grain boundary. 

 

+++ =∆ θδηδ sinl       and  +++ = θδηδ cosH   (2.3.2.31) 

++++ ∆
Ω

=∆ δηθδ cos
2

1
l

b
bn     (2.3.2.32) 

++++ ∆
Ω

−=∆ δηθδ cos
2

1
l

v
vn  (2.3.2.33)  

+++

Ω
=∆ δηθδ

σ

σ
σ sin

h
n   (2.3.2.34) 

0=∆ +
gnδ    (2.3.2.35)  

 



 86 

One can obtain exactly similar expressions for the other side of the triple junction, 

which will be identified by a negative sign as superscript in the following formulas: 
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One can than rigorously write down the rate of entropy production due to triple 

junction virtual transverse displacement for the left as well as the right hand side 

domains; 
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By using the same definitions, which described in the previous section, the 

following equations are obtained, 
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By taking consecutive limiting procedures such as; first with respect to 0→tδ , and 

then 0→∆l , one immediately obtains the following differential equations 

representing IEP associated with the virtual transverse displacement of the left and 

right sides of a triple junction singularity, 
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Finally, the IEP due to transverse displacement of the triple junction along the grain 

boundary can be calculated, after applying the consecutive limiting procedures as 

described previously. The result as follows along the designated positive directions:  
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Since it has been assumed on the on set that there is a thermal equilibrium in the 

system, the Helmholtz dissipation function, as described by Eq. (2.3.2.19), can be 

used. Then, according to Eq. (2.3.2.47), the projection of the dissipative force acting 

along the direction perpendicular to the grain boundary may be given by; 

 

( )−−++ −−= θθ σσ sinsin ggF trans)
  (dyne/cm)  (2.3.2.48)  

 

This relationship together with Eq. (2.3.2.30) clearly shows that triple junction 

without having any constrain (completely free junction) can be in complete 

physico-chemical equilibrium configuration if and only if the specific interphasial 

Gibbs free energies associated with the grain boundary and the both sides of the 

void surface layer satisfy a Nil Vectorial Summation Rule, which may represented 

by the following equation; 0=++ −+
σσ ggg g

rrr . It should be mentioned here that the 

similar vectorial connection exist among the surface tensions γ associated with the 

intersecting interfaces in order to have a mechanical equilibrium at the triple 

junction, which is also known as Young formula in the literature (Young, 1805). 

 

Above findings related to the transverse virtual motion of the triple junction is very 

important if one considers a more general problem where the grain boundary 

migration occurs as a result of some thermally activated processes. In that situation, 
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the transverse component of the triple junction velocity according to Eq. (2.3.2.48) 

may be given by the following expression; 

 

( )++−− −
ℜ

= θθ σσ sinsin ggd
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where ad  is the atomic distance and kTtrans
g /ℜ  is the triple junction transverse 

migration mobility, and this mobility is a phenomenological coefficient depending 

upon the temperature of the system through an activation energy barrier. 

 

In the case of lateral constraint on the grain boundary motion, the generalized lateral 

force now generates a particle flow at and through the triple junction along the void 

interfacial layer to establish thermostatic equilibrium configuration there by 

adjusting orientations of the neighboring left and right micro-elements. The 

conjugate particle flux (transverse flow) associated with this force can be 

immediately written as; 
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In above expression the angle ψ denotes the amount of rotation of the 

microelements adjoint to the triple junction in the anti-clockwise direction, and Sign 

is the usual sign function. A close inspection of above flux expression reveals that 

the direction of which as such that it tries to eliminate any deviation from the 

thermostatic equilibrium at the triple junction through the dihedral angles 
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readjustment by transferring mass from one side to another. Where, the direction of 

mass flow is always towards the establishment of the thermostatic equilibrium 

configuration, as one expects a priory from the meaning of the postulate of positive 

internal entropy production in the irreversible thermodynamics. 

 

 

2.4. Mathematical Model For the Evolution Dynamics of the Void 

Intergranular and Intragranular Motion  

 

The present model developed in this chapter considers not only the drift-diffusion of 

chemical species on the realistic void surface but also the direct transfer of chemical 

species between bulk phase and the void region through the interfacial layer 

(growth) as a dominant transport mechanisms. In two dimensional space the 

transgranular and intergranular motion of the void, surface of which is a general 

cylindrical in shape, can be represented by the normal displacement velocity even 

for multi-component systems such as aluminum and copper alloys, in terms of 

normalized and scaled parameters and variables, assuming that there is no charged 

particle in the void region (perfect insulator).  

 

First of all the time and the scale variables l  and  t  are normalized in the following 

manner, first of all an atomic mobility associated with the mass flow at the surface 

layer is defined as it has been already done in section 2.3.1. by the Eq. (2.3.1.42). 

And then a new time scale is introduced by; 
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where or  is the mean initial void radius which can be obtained directly from 

π/oo Ar = , using the fact that the initial void cross sectional area, oA , is also an 

invariant of the motion in the absence of the growth process. Similarly or  is used as 

a length scale. In the following formulas the bars over the symbols indicates the 

normalized and scaled quantities. 

 

The curvilinear coordinate along the void surface (arc length), l , the interconnect 

with w , and the local curvature, κ , that represents the capillary effect are 

normalized with respect to length scale and the system time, t , is normalized with 

respect to time scale as shown below:  

 

or/ll = , orww /= , or κκ =   and ott τ/= ,  (2.4.2) 

 

The volumetric Gibbs free energy difference between the realistic void and the bulk 

phase can be normalized by using the specific Gibbs free energy of the interfacial 

layer, denoted by σg , 

 

σg
rg

g ovb
vb

(
=   (2.4.3) 

 



 92 

The electrostatic potential generated at the void surface may be normalized with 

respect to the remote applied electric field denoted by 0E  and it is given by 

 

oorE
ϑ

ϑ =   (2.4.4) 

 

The relative importance of electromigration with respect to capillary forces can be 

easily represented by a single variable, χ , and that may be called as the electron 

wind intensity , as it will be shown later this is a very important experimental 

parameter in the simulations. 
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and similarly one may normalize the generalized mobility vbΜ̂  associated with the 

interfacial displacement reaction taking place during the void growth process, ˆ longΜ  

and ˆ transΜ , which correspond to the longitudinal and transverse triple junction 

mobilities , with respect to the mobility of the surface diffusion denoted by σΜ̂ , 

 

 
σΜ

Μ
=Μ ˆ

ˆ 2
ovb

vb
r

, 
ˆ
ˆ

long
long

σ

Μ
Μ =

Μ
  and  

ˆ
ˆ

trans
trans

σ

Μ
Μ =

Μ
  (2.4.6) 

 

where,  
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After these normalizations, the normal displacement velocity for the ordinary points 

can be obtained by using the surface flux, given by Eq. (2.3.1.40), and the incoming 

net lateral flux density, given by Eq. (2.3.1.41): 
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where, the angular dependent post factor ),( θϑD ′′  denotes that the surface drift-

diffusion is anisotropic. 

 

and the triple junction velocity in the direction along the grain boundary, 
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with the following boundary conditions at the triple junction in terms of the right 

and the left side fluxes; 
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where gJ  and ϑJ  denote the normalized atomic fluxes associated with the grain 

boundary flow, and the drift-diffusion due to electromigration, respectively.  

 

The drift-diffusion normalized atomic flux may be given by 

 

( ) ( )ϑχ
σ

ϑ l

r

∂
∂

⋅
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gb ˆ    (2.4.12) 

 

where gbΜ  is the grain boundary drift diffusion mobility gbn̂  is the normal vector 

along the grain boundary direction and oE
r

 is the remote applied electric field 

vector.  

 

The first group of terms in above partial differential equation (2.4.8) represents a 

rather conventional approach, which is very popular in the literature, and closely 

related to the mass accumulation due to surface diffusion along the void interfacial 

layer. The second group of terms, which appears first time in the literature, is due 

to the mass flow associated with the chemical species (vacancy flow in opposite 

direction) transfer between bulk phase and the void region having curved 

advancing boundary as a reaction front. This additional contribution to the void 

displacement process is a natural and rigorous out come of the novel application of 

the irreversible thermodynamics by Ogurtani (2000) to the curved interfaces using 
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a rather realistic concept of surface phases with finite extent as originally proposed 

by Guggenheim (1959) and Van Der Waals and Baker (1928), rather that the 

hypothetical Gibbs (1948) description. 

 

In the next chapter the numerical procedures and methods necessary to solve this 

boundary value problem will be discussed. 
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CHAPTER 3 

 
MATHEMATICAL MODEL 

& 

NUMERICAL PROCEDURES 
 
 
 

3.1.  Introduction 

 

The physical models discussed in this section are two-dimensional. In most 

applications, such an assumption is physically valid since the thickness of 

metallisation lines are usually small (≈ 2000 – 5000 Å) compared with the line 

width and the size of the voids that have become significant in degrading the line 

structure (< 1 µ). The only reason to make such an approximation is to simplify the 

mathematical analysis and also to reduce the computation time.  

 

In Chapter II, after the normalization procedures, the normal displacement velocity 

for the ordinary points was obtained as  

 

( ) ( )( , )ord vb vb vbv D g gϑ θ χϑ κ κ∂ ∂ ′′= + + − Μ + ∂ ∂ l l
 (3.1.1) 

 

 

Mass accumulation due to the 
surface diffusion along the void 

interfacial layer 

Mass flow associated with the chemical 
species transfer between the bulk and the 

void region, having a curved advancing 
boundary as a reaction front 
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It should be emphasized that the normalized Gibbs free energy (affinity) of the 

interfacial reaction with respect to the surface Gibbs free energy denoted as vbg  is 

in general not constant, but rather a function of space and time due to any possible 

compositional variations at the reaction front during the void evolution 

phenomenon. Therefore, the exact solution of the growth problem, which may be 

the future objective, still involves the complete numerical solution of the time 

dependent diffusion equation with drift (convective) term, and coupled to pseudo-

static electric field by utilizing proper boundary and initial conditions.  

 

However, for the present situation, namely a void in a thin film interconnect, in 

which the athermal vacancy concentration is extremely high (super saturation) 

because of the constant rate of vacancy creation due to the existence of severe 

internal stresses associated with the bended dislocation network and the thermal 

mismatch between the interconnect and the substrate material, one may assume that 

vbg  is constant of space and time. According to the extensive experimental studies 

performed by Blech (1976) and his coworkers (Kinsbron et al. 1977), at the end of 

the incubation period the steady state concentration profile established in the sample 

and over-all drift-diffusion phenomenon is controlled by the interface transfer 

reactions at the cathode and the anode ends. These observations give very strong 

indication that the vacancy concentration stays invariant at the advancing void 

surface layer. Therefore, under any circumstances for gross computer simulations, it 

is a reasonable approximation to assume that the normalized Gibbs free energy of 

interfacial reaction stays constant of time and space (isotropic), namely 0=∇ vbg . 

Then Eq. (3.1.1) becomes, 
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( ) ( )( , )ord vb vb
r

v n D g
t

ϑ θ χϑ κ κ
∂ ∂ ∂ ′′= ⋅ = + − Μ + ∂ ∂ ∂ 

v
v

l l
 (3.1.2) 

 

As they were discussed in chapter 2, the triple junction velocity in the direction 

along the grain boundary is given by, 

 

( )2
2 cos cos

2
g along long

g
g

d
v

hσ

λ θ θ+ −Ω  = Μ − +
 Ω

 (3.1.3) 

 

with the following boundary conditions at the triple junction in terms of the right 

and the left side fluxes; 

 

( ) ( )2 2
cos sin sin

22 2
glong transa a

o
Jd d

J Jϑ
σ σ

λ θ θ θ+ + − += Μ − + + + Μ −
Ω Ω

 (3.1.4) 

and 

 ( ) ( )2 2
cos sin sin

22 2
glong transa a

o
Jd dJ Jϑ

σ σ
λ θ θ θ− − − +=−Μ − − + + Μ −

Ω Ω
  (3.1.5) 

 

In the present model, a constant electric field oE  is imposed far away from the void 

surface, which generates an electrical field denoted by E, having zero normal 

components at the void – interconnect interfacial layer as well as the upper and 

lower interconnect boundaries. In this model it is also assumed that at the upper and 

lower interconnect boundaries the vacancy concentration is kept constant. Figure 

3.1.1 shows the schematic representation of the model, which is under discussion.  
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Figure 3.1.1: The schematic representation of the problem.  

 

3.2.  Program “Electromigration” 

 

In the following subsections the numerical methods are discussed as in the order as 

the computer program “Electromigration”, which is a C code. 

 

i. Preparation of the Initial System  

 

First of all the initial system that is composed of the void surface and the 

interconnect edges, is simulated by employing hypocycloid algebra in connection 

with the discretization procedure having a finite number of nodes using 

predetermined segment lengths. Even thought the used model is two-dimensional, 

in order to take the advantage of using vector algebra, the system nodes is 

represented by the three-dimensional vectors described as, 
0
y

x

r i =
r

.  
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After knowing the node position vectors, it is straight forward to calculate the 

segment lengths, s , and the centroid position vectors, cr
r

, such as: 

 

i
i rs

v∆=  where iii rrr
vvv

−=∆ +1  (3.2.1) 

and 

2

1 ii
i

c
rrr
vvv +=

+
 (3.2.2) 

 

Figure 3.2.1 shows an example of such an initial system. 

 

 

 

Figure 3.2.1: Example initial system; ir
r  is the node position vector, i

cr
r

 is the 

centroid position vector, in̂  is the normal vector at the centroids, ir
r

∆  is the 

vector that connects the successive nodes and is  represents the segment lengths. 
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ii.  Calculation of the Turning Angles at the Nodes 

 

The turning angles at the nodes are calculated by using the definitions of the vector 

and the dot products of the two vectors and the figure 3.2.2.  
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Figure 3.2.2: The segment turning angle, iθ , at the node i. 

 

iii.  Calculation of Node Curvatures 

 

The curvatures at the nodes can be evaluated at each node by using a discrete 

geometric relationship in connection with the fundamental definition of radius of 

curvature and the normal vector. 

 

Let us define some geometric relationships; first of all the curvature of a circle with 

radius iρ  (radius of curvature) is iρ/1  and furthermore three point in the plane 
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define a unique circle whose circumference pass from all of these three points. 

Figure 3.2.3 shows such a circle that passes from the three successive void nodes 

ii   ,1− , at which the local curvature is wanted to calculate, 1  and +i  by using the 

known values of the segment lengths, is , and the segment turning angle iθ . 

 

 

Figure 3.2.3: The unique circle that pass from the three successive void nodes, O  

is the center of the circle, DNsi = , CNsi =+1 , DNOB ⊥ , CNOA ⊥  and 

inCDAB ˆ// ⊥ . 

 

From figure 3.2.3 one can immediately write down the following identities. 

 

)sin(2 i

i
i

s
α

ρ =  (3.2.4) 

 



 103 

where iα  is the angle 
∧

BON  and it is very easy to see that this angle also equals to 

∧
BAN . Then, the curvature at the node i  is given by: 

 

i

i

i
i s

)sin(21 α
ρ

κ ==   (3.2.5)  

 

In order to calculate the value of the angle iα , first of all let us calculate the value 

of the tangent of the angle iα . 
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 (3.2.6) 

Using the Eq. (3.2.5) and (3.2.6), the local curvature is given by 

 

i

i
i

i

i
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iv. Calculation of the Local Line Normal Vectors  

 

In order to calculate the normal vectors at the void nodes, let us calculate the value 

of the angle 
∧

OND ; from figure 3.2.3 one can easily write that ( ) ii απβ −= 2/ . 

 

Then first multiply ir
r

∆ , which is the vector that connects the successive nodes by 

the anticlockwise rotation matrix in order to obtain a vector along the local line 

normal vector as shown below, 

 

i
ii

ii
i rn

rr
∆⋅=

100
0)cos()sin(

0)sin()cos(

ββ

ββ

 (3.2.8)  

 

After that it is straightforward to calculate the local line normal vector namely, 

iii nnn
rr

/ˆ = . 

 

 

v. Calculation of the Electrostatic Potentials by using the Indirect 

Boundary Element Method solution of the Laplace’s Equation 

 

At this point before proceeding further, a brief description of the indirect boundary 

element method (IBEM) is given, and then by using this method the electrostatic 

potentials at the void surface and the interconnect edges are calculated.  
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The boundary element method (BEM) is now a well-established numerical 

technique for the solution of a wide range of engineering problems. The main 

advantage of the BEM is its unique ability to provide a complete problem solution 

in terms of boundary values only (Brebbia and Dominguez, 1992). 

 

An initial restriction of the BEM was that the fundamental solution (FS) to the 

original partial differential equation was required in order to obtain an equivalent 

boundary integral equation (Partridge et al., 1992). 

 

There exist two basic types of boundary element method, the indirect and the direct 

methods (Beer and Watson, 1992). The precursor of the BEM’s was the Trefftz 

method (Brebbia and Dominguez, 1992) in which an approximate solution of the 

boundary value problem is obtained by the superposition of FS’s where the source 

points are located outside the domain, and it only remains to adjust the intensities of 

the sources to obtain the best possible agreement between the boundary conditions 

satisfied by the approximate solution and the actual boundary conditions. 

 

In IBEM the solution is again obtained by the superposition of FS’s but instead of 

the sources being located at a finite number of points outside the domain they are 

distributed continuously over its boundary. The intensity of the distribution is 

usually known as the density function (DF). The partial differential equation is 

automatically satisfied at every interior point of the domain, and the only thing that 

is required is to satisfy the boundary conditions by the suitable choice of the DF. 

Once the DF has been solved, physically meaningful results at boundary and 

interior points of the domain are computed by integration over the boundary.  
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In this problem one is seeking the solution of a Laplace equation in a two 

dimensional domain that is given by the following equation 

 

0)(2 =∇ rϑ  (3.2.9) 

 

with the following boundary conditions, namely Neumann boundary conditions, 

 

0ˆ
)(

ˆ)(ˆ =
∂

∂⋅=∇⋅ r
r
r

nrn
ϑϑ  (3.2.10) 

 

where the scalar function )(rϑ  is the electrostatic potential at the boundaries. 

 

For a two dimensional problem, the source is assumed to be distributed along a line 

of infinite length from −∞=z  to ∞=z  and the fundamental solution ),( QPU , 

which satisfies the Laplace equation and represents the field generated by a 

concentrated unit charge at P (source point) acting at a point Q (field or observation 

point), is given by (Paris and Canas, 1997): 

 

r
QPU

1
ln

2
1

),(
π

=  (3.2.11) 

 

where r is the distance from source point to field point. Figure 3.2.4 shows the 

variation of the FS for the two-dimensional potential problems, at which the source 

is at the origin. 
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Figure 3.2.4: Graph of the FS of Laplace equation for two-dimensional problems. 

 

By using the FS, given in Eq. (3.2.11), the directional derivative of the FS, which 

satisfy Laplace equation, can be obtained as,   

 

r

r

rn

r
r

n
r

r
r

r
QPUnr

r
QPUnQPUnQPT

r

r

r

r
r

r

r
r

)cos(
2
1              

)cos(ˆ

2
1ˆ

2
1

              

),(ˆ ˆ),(ˆ),(ˆ),(

2

θ
π

θ
ππ

−=

−=⋅−=

∂
∂⋅=

∂
∂⋅=∇⋅=

 (3.2.12) 

 

where θ  is the angle between the line QP and the outward normal n̂  as shown in 

figure 3.2.5. Figure 3.2.6 shows the variation of the directional derivative of FS 

where the flow is in the x direction. 
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Figure 3.2.5: Notation for the FS of Laplace Equation.  

 

Figure 3.2.6: Graph of the directional derivative of FS for two-dimensional 

problems. 

 

In the IBEM, one seeks a solution in the form of 
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( ) ∫=
S

PdSPQPUQu )(),( µ  (3.2.13) 

 

where the density function )(Pµ  is the intensity of sources, which are continuously 

distributed over the boundary S of the domain. In two-dimensional problems, dS  

means with respect to arc length. The subscript P  means that in the integration the 

point moves over the boundary whilst the point Q stays still. Since ),( QPU  

satisfies the governing partial differential equation everywhere except at P, )(Qu  as 

defined by Eq. (3.2.13) satisfies the differential equation at all interior points of the 

domain, but not on its surface S. Eq. (3.2.13) is referred to as the integral 

representation. 

 

At this point the only thing that must be satisfied is the boundary conditions. When 

considering how to do this, it should be borne in mind that the solution must satisfy 

the governing partial differential equation at all points inside the domain and also 

on the surface S. The integral representation does not do this, and it follows that for 

the Neumann boundary conditions it is necessary to equate the limiting values as Q 

on S is approached from inside the domain of )(Qu  and )(ˆ Qun ∇⋅  as defined by 

Eq. (3.2.13) to the given boundary data. 

 

 

Figure 3.2.7: Satisfaction of boundary condition in the IBEM 
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For the Neumann condition, one must set the limiting value as Q’ approaches Q 

(figure 3.2.7) of the derivative in the direction )(Qn  of )'(Qu  as defined by Eq. 

(3.2.13) to its given value )(Qt . The function )',( QPU  is bounded and so it is 

permissible to differentiate under the integral sign: 

 

∫

∫

=

⋅=∇⋅

S
P

S
P

dSPQPT

dSPQPUnQun

)(),(                

)(),(ˆ)(ˆ

µ

µ

 (3.2.14) 

 

Where )',( QPT  is given by Eq. (3.2.12) 

 

One may now write 

 

)()'(lim
'

QtQ
n
u

QQ
=

∂
∂

→
 (3.2.15) 

 

To illustrate the behavior of the function )'(/ Qnu ∂∂ as Q’ approaches and passes 

through S at Q’ let us take Q to be on a straight part of the boundary of a two-

dimensional domain, and let us suppose that over this straight part of the boundary 

)(Pµ  is constant and therefore equal to )(Qµ . ),( nQS  denotes the straight part AB 

of the boundary as shown in figure 3.2.8, where ε  denotes the distance 'QQ . 

 

)'()'()'( 21 QIQIQ
n
u

+=
∂
∂

 (3.2.16) 
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where 

 

∫=
),(

1 )()',()'(
nQS

PdSPQPTQI µ  (3.2.17) 

 

and 

 

∫
−

=
),(

2 )()',()'(
nQSS

PdSPQPTQI µ  (3.2.18) 

 

 

Figure 3.2.8: Limit of integral over AB as Q’ approaches Q 

 

The function )'(2 QI  varies continuously as Q’ approaches and passes through S . 

When Q’ is inside the domain as shown in figure 3.2.8, 

∫∫
−−

==
α

α

θ
π

µµ
π

θ d
r

QdsP
r

QI
n

n
2
1)()(

2
cos)'(1  (3.2.19) 

 

where 
ε

α
n1tan−= . By integrating and substituting limits one finds that 
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π
α

µ )()'(1 QQI =  (3.2.20) 

 

and so since α  tents to 2/π  as Q’ approaches Q, 

 

)(
2
1

)'(lim 1
'

QQI
QQ

µ=
→

 (3.2.21) 

 

When Q’ is at Q, 0)',( =QPT  for all P  in ),( nQS , and so 0)(1 =QI . Therefore, 

 

)(
2
1

)(),()'(lim
'

QdSPQPTQ
n
u

S
P

QQ
µµ +=

∂
∂

∫→
 (3.2.22) 

 

Substituting this result into Eq.3.2.15 gives 

 

)()(),()(
2
1

QtdSPQPTQ
S

P =+ ∫ µµ  (3.2.23) 

 

which is the integral equation for the Neumann boundary condition. 

 

For the purpose of numerical analysis there is a significant restriction that is the 

point Q can not be located at an edge or corner, or at any point at which )(Qt  is 

discontinuous. Edges and discontinuous )(Qt  occur frequently in engineering 

analysis. As the point P on S approaches Q, for two-dimensional case it remains 

bounded. It should be borne in mind however that in the analysis leading to this 
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conclusion it is supposed that )(Qµ  is bounded and indeed continuous, whereas 

analogy with the distribution of electrical charge over a conducting surface suggest 

that edges, corners and discontinuities of )(Qt . The generality of the method may 

therefore be greater than that suggested by existing mathematical analysis. 

 

In the simplest implementation of the IBEM of solution of Laplace’s equation, the 

boundary S is represented by straight-line elements in two dimensions, and it is 

supposed that over each of these elements )(Qµ  is constant. Simultaneous 

equations for the value of )(Qµ  are obtained by taking point Q  in Eq. (3.2.13) to be 

located at the centroid of each of these elements in turn. Let there be N elements 

N21 S , ... , , SS , then for the present problem, the simultaneous equations are 

 

( ) ( ) ( )∑
=

=∆+
N

j
ijiji QtQTQ

12
1

µµµ , Ni  , ... 2, ,1=  (3.2.24)

  

where 

 

( )∫=∆
j

j
S

pijij dSQPTT ,  (3.2.25) 

 

Since in Eq. (3.2.24) the point iQ  is at the centroid of an element, the surface 

smoothness condition for validity of that equation is always satisfied. 
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For a finite domain, the matrix of equation coefficients is singular in the limit as the 

number of elements tends to infinity and it is necessary for example to take )(Qu  to 

be zero at one of the elemental centroids; Eq. (3.2.24) is then written at that centroid 

and at all the others. For an infinite domain, the integral representation can model at 

infinity ∫=
S

p
o

dSP
r

Qu )(
1

ln)( µ where or  is distance from an arbitrary chosen 

reference point in two dimensions, but not a non-zero constant value. Therefore, the 

solution of the Neumann boundary value problem, and the matrix of equation 

coefficients are not singular in the limit as the number of elements tends to infinity. 

 

It is possible to evaluate analytically the integral ijT∆ : note that since the elements 

are straight, 0),( =ii QPT  everywhere on the element iS  and so in Eq. (3.2.14), 

0=∆ iiT  and leading diagonal coefficients all equal ½. The matrix coefficients of 

Eq. (3.2.24) are dimensionless in the sense that they have the same numerical values 

regardless of the choice of the unit of distance. 

 

Here let us turn back to the problem at which the direction of the applied electric 

field is in the positive x direction. 

 

Now let us seek a solution as the sum of two parts, these being the electrostatic 

potential due to applied electric field that would exist if the void were not there, and 

a perturbation of that solution chosen so that the sum of the two parts satisfies the 

boundary conditions.  
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)()()( III rrr ϑϑϑ +=  (3.2.26) 

 

The boundary condition given by Eq. (3.2.10) indicates that the electric field at the 

boundary along the boundary normal direction is zero. 

 

0)()())(())((         

))(()(
IIIIII =Ε+Ε=−−=

−=Ε

QQQgradQgrad

QgradQ

ϑϑ

ϑ
 (3.2.27) 

 

For the present problem; if there is no void inside the interconnect the electrostatic 

potential that corresponds the electrostatic applied voltage along the negative x 

direction according to the coordinate system shown in figure 3.2.9, is given by 

 

)cos(
0
0
1

)(I φϑ rErExEQ ooo −=⋅−=−= r
 (3.2.28) 

 

Figure 3.2.9: Coordinate system 

 

From the solution in Eq. (3.2.27), the normal component of the electric field on the 

boundaries may be calculated as 
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)cos()(ˆ))(()( 0
III φϑϑ EQnQgradQ −=∇⋅−=−=Ε  (3.2.29) 

 

By comparing the Neumann boundary conditions given in Eq. (3.2.27) and the Eq. 

(3.2.29) it is found that the normal component of the electric field due to the 

fictitious charges distributed along the boundaries have to be given by 

 

)cos()()( 0
III φEQQ =Ε−=Ε  (3.2.30) 

 

Now the problem is to adjust the magnitude of the fictitious charges, denoted by iµ , 

such that to satisfy the Eq. (3.2.30) in order to satisfy the boundary conditions. 

Noting that the normal derivative of the FS is ),( QPT , the boundary condition at 

the point iQ  can be satisfied by using the Eq. (3.2.24). 

 

( ) ( ) ( )∑
=

Ε=∆+
N

j
ijiji QQTQ

1

I

2
1

µµ , (3.2.31) 

 

where N is the number of charges and ( )jiij QPTT ,∆=∆  and it may be calculated 

by using the integral given by the Eq. (3.2.25). After finding the charge distribution 

that satisfy the boundary conditions the )(II Qϑ  can be calculated as 

 

( ) ( )∑
=

∆=
N

j
jiji QUQ

1

II µϑ , (3.2.32) 
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where ( )jiij QPUU ,∆=∆  and it may be calculated by using the following integral 

 

( )∫=∆
j

j
S

pijij dSQPUU ,  (3.2.33) 

 

These integrals can be calculated numerically by using the trapezoidal rule. By 

using the notation in figure 3.2.10 and assuming that the charge density function at 

a given segment distributed uniformly, the formulas for jiT ,∆  and jiU ,∆  may be 

found as, 
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and 
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Figure 3.2.10: Segment division for the numerical integration, dm  is the number of 

division. 

 

The vector )(II
ii QΕ=Ε  can be calculated by using the Eq. (3.2.29) and then one 

obtains the following system of simultaneous equations, which can be solved for the 

unknown fictitious charges iµ . 

 

I
, iijiT Ε=⋅∆ µ  (3.2.34) 

 

The nodes described in this problem contains three different set at each of which the 

centroids are continuous. These are the upper interconnect edge (UIE), the lower 

interconnect edge (LIE) and the void circumference (VC), whose number of 
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centroids are denoted by un , ln  and vn  respectively. Then the connectivity matrix 

is given in the figure 3.2.11, where vluulvluul nnnnnnn ++=+=   and  . 

 

 

Figure 3.2.11: The connectivity matrix 

 

For the solution of above linear system, Gaussian elimination with back substitution 

method is performed. Also in this method a pivoting strategy is applied for the error 

reduction (Mathews, 1992). 

 

In order to test the validity of the IBEM solution, it was assumed that there is a 

circular void, inside interconnect with an infinite width, and the charge distribution 
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around the void circumference, whose analytical solution is known and given by the 

Eq. (3.2.35), was calculated. 

 

)cos(2)( φφµ −=  (3.2.35) 

 

Figure 3.2.12: Charge distribution around a circular void. Bar plot indicates the 

IBEM solution and the solid line is the analytic al solution.  

 

When one compares the numerical and analytical solutions, which may be seen in 

figure (3.2.12), there is a perfect match between these two solutions. 

 

After checking the IBEM solution let us continue to go over the program 

“Electromigration”. 
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vi. Calculation of Anisotropic Surface Diffusivity 

 

The anisotropic diffusivity of surface atoms is incorporated into the numerical 

procedure by adapting the following relationship, 

 

( )[ ]{ }φθφθ σσ −Α+= mDD o 2cos1),(~   (3.2.36) 

 

where 0
σD  is the minimum surface diffusivity corresponding to a specific surface 

orientation, θ  is the angle formed by the local tangent to the surface and the 

direction of the applied electric field. Α , m, and φ  are dimensionless parameters 

that determine the strength of the anisotropy, the grain symmetry through the 

number of crystallographic directions that corresponds to fast diffusion paths, and 

the misorientation of the symmetry direction with respect to the direction of the 

applied electric field oE , respectively. For brevity this angular dependent part of 

the diffusivity in above equations is denoted by ),( φθD ′′ . Where mN 2=  

corresponds to the rotational degree of symmetry or fold-number. 

 

The following figures are obtained by using Eq. (3.2.36), in which the minimum 

surface diffusivity is taken as unity namely 0=oDσ . 

 

Figures 3.2.13 and 3.2.14 shows the diffusion anisotropy of a crystal with a two-

fold symmetry where the anisotropy strength is 5=Α  and the misorientation angles 

are  6/  and  0 πφφ == respectively.  
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Figure 3.2.13: Diffusion Anisotropy, 0  and  1  ,5  ,10 ===Α= φσ mD  

 

 

Figure 3.2.14: Diffusion Anisotropy, 6/  and  1  ,5  ,10 πφσ ===Α= mD  
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Figures 3.2.15 and 3.2.16 show that the diffusion anisotropy of a crystal with a 

four-fold symmetry where the misorientation angle is 0=φ  and the anisotropy 

strengths are 5=Α  and 3=Α , respectively.   

 

Figure 3.2.15: Diffusion Anisotropy, 0  and  2  ,5  ,10 ===Α= φσ mD  

 

Figure 3.2.16: Diffusion Anisotropy, 0  and  2  ,3  ,10 ===Α= φσ mD  
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Figure 3.6.17 shows that the diffusion anisotropy of a crystal with a six-fold 

symmetry where the misorientation angle is 0=φ  and the anisotropy strength is 

5=Α . 

 

Figure 3.2.17: Diffusion Anisotropy, 0  and  3  ,5  ,10 ===Α= φσ mD  

 

 

vii. Explicit Euler’s Method 

 

Explicit Euler’s method (Mathews, 1992) is used to perform the time integration of 

Eq. (3.1.2) for the void profile evolution. The time step is determined from the 

maximum surface velocity such that the displacement increment is kept constant for 

all time step increments. This so-called adapted time step auto-control mechanism 

combined with the self-recovery effect associated with the capillary term guarantees 

the long time numerical stability and the accuracy of the explicit algorithm even 

after performing several hundred to several millions steps. 
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viii. Remeshing  

 

As it can be seen from the figure 3.2.18 that the void profile experiences a large-

scale evolution during the numerical simulations.  

 

Figure 3.2.18: Void profile evolution, i  represents the node number, in̂  is the local 

line normal, is  denotes the segment length between the nodes 1−i  and i  and the 

primes over the segment lengths indicates the future. 

 

In the present study the numerical methods require that the segment lengths must 

not be exceeded a critical value in order to keep the accuracy in an acceptable level. 

And also as the number of nodes increase the computation time is also increases. 

These two statements require that the segment lengths must be keep in a range 

between the minimum and the maximum segment lengths, [ ]maxmin , ss , in terms of 

a prescribed percentage of the mean distance. 

 

If the distance between any two neighboring nodes becomes longer than maxs , then 

the mid-point is converted into a node as illustrated in figure 3.2.19.a. 
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Similarly, if the distance between any two neighboring nodes becomes shorter than 

mins , then the further node is removed from the mesh and the new segment is 

formed as illustrated in figure 3.2.19.b. After such a node removal process the new 

segment length has t o be controlled whether it is longer than maxs  or not. 

 

 

 

Figure 3.2.19: Remeshing, a) The segment length is bigger than the maximum 

allowable segment length b) The segment length is smaller than the minimum 

allowable segment length 

 

 

ix. The flowchart of the Program “Electromigration” 

 

After explaining the numerical methods used in the program “Electromigration”, 

let us define the all program as a flowchart, which can be seen in Figure 3.3.1. 

 

The definitions of the input parameters used in the program can be found in the 

Appendix A. 
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Figure 3.2.20: Program flow chart. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 
In this chapter, a detailed classification of electromigration induced void 

morphological evolution of intra- and inter-granular voids in metallic thin films are 

presented by using the outputs of the program “Electromigration”.  

 

The effect of normalized interconnect with and the electron wind intensity on the 

electrostatic field distribution along the void circumference, which is shown in 

figure 4.1, is investigated by using the IBEM calculations. 

 

Figure 4.2 shows the electrostatic field distribution along the void circumference 

for different normalized interconnect widths, when the normalized electron wind 

intensity is kept constant at 1χ = . In figure 4.2, the letters A, B, C and D 

correspond to the points on the void circumference represented by the same letters 

as shown in figure 4.1.  

 



 129 

 
Figure 4.1: Schematic representation of the system. 

 
Figure 4.2: Electrostatic field distributions along the void circumference for 

different normalized interconnect widths. The electron wind intensity: 1=χ . 

 

From figure 4.2 it may be said that, when the normalized interconnect width is 

5≥w , the effect of current crowding on the shape evolution may be partially 

avoided. 

 

Figure 4.3 shows the electrostatic field distribution along the void circumference 

for different normalized electron widths when the normalized interconnect width is 

kept constant at 4.1=w . Similarly in this figure the letters A, B, C and D 

correspond to the points on the void circumference represented by the same letters 

as shown in figure 4.1. 
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Figure 4.3: Electrostatic field distribution along the void circumference for 

different electron wind intensities. The normalized interconnect width: 4.1=w . 

 

 

4.1. Void Intra-granular Motion 

 

4.1.1. Isotropic Surface Diffusivity 

 

i. Without Void Growth Mechanism 

 

In order to see how the void dynamic proceeds, and what types of final 

configurations can be generated at the absence of the diffusion anisotropy and the 

interface controlled growth process, two distinct experiments have been performed 

utilizing critical and uncritical-asymmetric void shapes. 
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In figure 4.1.1.1, the initial shape of the void is uncritical, and there is a formation 

of a new or daughter void in front of the advancing parent. In the case of a critical 

void the crescent-like slit formation occurs as shown in figure 4.1.1.2, rather than 

the transverse wedge or slit shape generation, which could produce failure. These 

experiments do not give any indication of open circuit failure other than some 

deterioration at the interconnect edges in the absence of void growth and anisotropy 

in the surface diffusion. The effects of various initial void forms under the large 

range of electron wind intensities have been investigated recently by Oren (2000-a 

and 2000-b) and Oren and Ogurtani (2001), who prove that the electromigration 

phenomena is highly non-linear that is strongly dependent upon the initial state of 

the system. 

 

 

 
 

Figure 4.1.1.1: Void morphology evolution for an Un-critical initial void 

configuration under the Isotropic surface diffusion conditions without growth 

process. 100=χ . Scaled strip width 2=w . 
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Figure 4.1.1.2: Void morphology evolution for a Critical initial void configuration 

under the Isotropic surface diffusion conditions without growth process. Electron 

wind intensity .100=χ  Scaled strip width 2=w . 

 

ii. With Void Growth Mechanism 

 

The effect of the interface controlled growth process, which involves not only the 

Gibbs free energy of reaction but also the local curvature in connection with the 

specific surface Gibbs free energy, has been investigated and the representative 

result obtained is presented in figure 4.1.1.3.  

 

It should be mentioned that, Kraft and Arzt (1997) has also considered the growth 

process in their extensive simulation studies, by adapting self-similar enlargement 

of the void with a constant rate of growth. Unfortunately, this ad hoc procedure, 

which does not take into account the capillary effect through the curvature term, has 

not been successful in generating any unusual morphological outbreak such as the 

actual laboratory observations on the real samples. 
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In this experiment, one has still employed uncritical shape in connection with the 

isotropic surface diffusion. This figure shows formation of a rather interesting 

morphology, especially when void is situated at the center of an interconnect, 

namely first an appearance of a single slit-like void shape at intermediate 

observation time, and then the evolution towards the dendritic structure (multi-slit) 

after having a prolong exposure times, rather than giving a fragmentation 

phenomenon as in the case of figure 4.1.1.1. In this experiment a high normalized 

electron wind intensity such as 100=χ  is employed in order to scale down the 

normalized observation time.  

 

 
 

 

Figure 4.1.1.3: Void morphology evolution (Dendritic Structure) for an Un-critical 

initial void configuration under the Isotropic  surface diffusion and Void Growth  

conditions ( 10−=∆ vbg , 10=vbM ). Electron wind intensity .100=χ  Scaled strip 

width 2w = .  
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4.1.2. Anisotropic Surface Diffusivity 

 

Surface diffusion anisotropy is determined by the variation of surface diffusivity 

with surface orientation and also depends on the grain orientation for each grain of 

the polycrystalline metallic thin film. In Eq. (3.2.36), the anisotropy of surface 

diffusion is quantified through the dimensionless parameters, which are fully 

discussed in section 3.2.vi. 

 

Grain orientation is expressed by the crystallographic direction normal to the 

surface of the film and the misorientation of the crystallographic symmetry axes in 

the grain with respect to the applied electrostatic field. The parameter m  in Eq. 

(3.2.36) is an integer number that characterizes the film surface plane; this plane is 

perpendicular to the cylindrical void surface. In fcc metals, such as aluminum, these 

symmetry axes correspond to ><110  crystallographic directions. Each of the 

{ }110  planes contain only one >< 110  axis, therefore these planes have 1=m . In 

the same way, for { }100  planes 2=m  and for { }111  planes 3=m .  

 

The term “N-fold” symmetry is used to denote the number of the fast diffusion 

paths on a crystallographic plane. Since each crystallographic axis corresponds to 

two opposite directions, mN 2= .  

 

Therefore, [ ]110 -, [ ]100 - and [ ]111 - oriented grains are characterized by twofold, 

fourfold and six fold symmetry respectively.  
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i. Critical Initial Void Configuration 

 

In figures 4.1.2.1, 4.1.2.2 and 4.1.2.3 the initial void shape is chosen to be critical-

asymmetric with respect to the direction of the electron flow which is in the 

opposite direction of the applied electrostatic field. In these simulation experiments, 

the constant interface controlled growth process has also been taken into account.  

 

a. Sixfold Crystal Symmetry: m = 3 

 

The sixfold crystal symmetry ( 3=m , and [ ]−111 oriented grains in Al) in the 

surface diffusion coefficient becomes a factor in the development of the faceted 

void as shown in figure 4.1.2.1. It can be seen that at the very beginning the semi 

hexagonal shaped void develops as would be expected from the sixfold symmetry. 

In agreement with the Kraft and Arzt (1997) and Gungor and Maroudas (1999) it is 

found that the facets do not develop exactly along the directions with the highest or 

lowest diffusivity in general. In the figure, the fast diffusion directions are 

coinciding with the peak positions in the polar diffusivity graphs.  

 

 
Figure 4.1.2.1: Void morphology evolution for a critical initial void configuration 

( 3=m , 5=A , 0=θ , 5−=∆ vbg , 5=vbM ). Electron wind intensity: .10=χ  

Scaled interconnect width: 2=w . Normalized failure time: .03929.0=ft  
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In the study of Kraft and Arzt (1997), the authors state that the semi hexagonal void 

shape is very stable and also even when the void reaches more than 95% of the line 

width no shape changes are seen. However in our case, especially in the later stages 

of the evolution, the significant current crowding on the void surface due to the 

large void size drives a morphological instability that leads to a very blunt slit-like 

formation. The slit is also faceted and these facets nearly have the same orientations 

with the facets of the void that formed in the former stages. This observed 

advancing front causes an open circuit failure by hitting the upper edge of 

interconnect. The main reason for this difference is that, as mentioned before, Kraft 

and Arzt (1997) use a self-similar enlargement of the void as a growth process, 

which is contradictory to the experimental observations. 

 

b. Fourfold Crystal Symmetry: m = 2 

 

Figure 4.1.2.2 shows the void morphological evolution in grains having fourfold 

symmetry ( 2=m , and [ ]−100  oriented grains in Al) in the anisotropic diffusion 

coefficient.  

 
 

Figure 4.1.2.2: Void morphology evolution for a critical initial void configuration 

( 2=m , 5=A , 0=θ , 5−=∆ vbg , 5=vbM ). Electron wind intensity: .10=χ  

Scaled interconnect width: 2=w . Normalized failure time: 02909.0=ft . 
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The initially formed faceted morphology evolves into a wedge-like shape, which 

accelerates the early open circuit failure by hitting the upper edge of interconnects.  

 

c. Twofold Crystal Symmetry: m = 1 

 

In figure 4.1.2.3, the twofold symmetry ( 1=m , and [ ]−110 oriented grains in Al) in 

the surface diffusion becomes a main factor in the development of the straight 

advancing slit, which accelerates the very early open circuit failure due to a sharp 

slit hitting the upper edge of the interconnect.  

 

 
 
 

Figure 4.1.2.3: Void morphology evolution for a critical initial void configuration 

( 1=m , 5=A , 0=θ , 5−=∆ vbg , 5=vbM ). Electron wind intensity: .10=χ  

Scaled interconnect width: 2=w . Normalized failure time: 00329.0=ft . 

 

Again, the orientation of the slit does not follow one of the planes with highest or 

lowest diffusivity. Instead, the slit seems to follows one of the (111) planes.  

 

 

 

1µ 
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ii. Uncritical Initial Void Configuration 

 

In figures 4.1.2.4, 4.1.2.5 and 4.1.2.6 the initial void shape is chosen to be 

uncritical-asymmetric with respect to the direction of the electron flow which is in 

the opposite direction of the applied electrostatic field.  

 

Similarly in these simulation experiments, the constant interface controlled growth 

process has also been taken into account. 

 

a. Sixfold Crystal Symmetry: m = 3 

 

 

 

Figure 4.1.2.4: Void morphology evolution for an uncritical initial void 

configuration ( 3=m , 5=A , 0=θ , 5−=∆ vbg , 5=vbM ). Electron wind 

intensity: .10=χ  Scaled interconnect width: 2=w . Normalized failure time: 

04651.0=ft . 
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b. Fourfold Crystal Symmetry: m = 2 

 

 

 

Figure 4.1.2.5: Void morphology evolution for an uncritical initial void 

configuration ( 2=m , 5=A , 0=θ , 5−=∆ vbg , 5=vbM ). Electron wind 

intensity: .10=χ  Scaled interconnect width: 2=w . Normalized failure time: 

02979.0=ft . 

 

c. Twofold Crystal Symmetry: m = 1 

 

 

 

Figure 4.1.2.6: Void morphology evolution for an uncritical initial void 

configuration ( 1=m , 5=A , 0=θ , 5−=∆ vbg , 5=vbM ). Electron wind 

intensity: .10=χ  Scaled interconnect width: 2=w . Normalized failure time: 

00541.0=ft . 
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These last three figures show that as an intermediate step; the uncritical initial void 

shape is converted into the critical form as suggested by the experimental studies 

performed by Arzt et al. (1994), and Kraft and Arzt (1997).  

 

From these simulation experiments, which are presented by figures 4.1.2.1-6, the 

effect of the degree of surface diffusion anisotropy in connection with the 

normalized time to failure, ft , is observed and the relevant data are tabulated in 

table 4.1.2.1.  

 

Table 4.1.2.1: Influence of the degree of surface diffusion anisotropy on the 

normalized failure time ft . 

 
Critical Uncritical Fold 

Number 

Texture for 

FCC Metals (Al) ft  ft  
 

50t  

2 (1 10) - [110] 0.00329 0.00541 8170 

4 (001) - [100] 0.02909 0.02979 - 

6 (111) - [1 10] 0.03929 0.04651 59000 

 
 

The data indicate that the normalized failure time increases drastically as the degree 

of symmetry in the surface diffusion anisotropy increases. According to table 

4.1.2.1, the normalized effective time to failure ft  shows about one order of 

magnitude enhancement changing from twofold symmetry to sixfold symmetry for 

both critical and uncritical initially nucleated voids. The lifetime improvements are 

11.9 times and 8.6 times for the critical and uncritical cases respectively.  
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These results are in excellent agreement with the experimental findings of Joo and 

Thompson (1997), which are given as 50t  in the last column of the Table 4.1.2.1, 

concerning Al (110) and Al (111) on SiO2 substrates. Their experimental 

observations indicate that when they change the orientation of Al lines from 

twofold symmetry to sixfold symmetry the lifetime improvement is 7.2. 

 

A comparison of the results presented in table 4.1.2.1, indicates that the uncritical 

initial void configuration yields about a factor of one and an half longer life time 

for the interconnect then the critical initial void configuration regardless of the fold 

number. This tendency is also suggested by the experimental studies performed by 

Arzt et al. (1994). They found that the lifetime improvement is 4.1. However on the 

long run, both shapes are detrimental for aluminum interconnects especially in the 

case of twofold symmetry that means [ ]100)001( ×  texture in fcc metals. 

 

These computer experiments clearly indicate the importance of the surface diffusion 

anisotropy for the premature formation of a fatal open circuit configuration, and the 

further enhancement of this deterioration due to void growth process caused by 

supersaturated vacancies in the bulk matrix.  

 

Therefore, one should choose the highest symmetry plane and the most close 

packed direction, such as { }111 011  in fcc metals and alloys as a texture for the 

metallic interconnect thin films. 
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4.1.3. Comparison of Simulations with the Experimentally Observed Void 

Configurations  

 

In figures 4.1.3.1 to 4.1.3.5, the qualitative comparisons, which are carried out 

between the simulation predictions for electromigration induced void evolution and 

the observations of such void configurations that have been published in the 

literature.  

 

    
 

Figure 4.1.3.1: Formation of a narrow slit a) Simulation result: ( 1=m , 5=A , 

0=θ , 5−=∆ vbg , 5=vbM , 10=χ ) b) SEM micrograph from the work of Arzt 

et al. (1994). 

 

   
 

Figure 4.1.3.2: Formation of a faceted void a) Simulation result: ( 2=m , 5=A , 

0=θ , 5−=∆ vbg , 5=vbM , 10=χ ) b) SEM micrograph from the work of Kraft 

and Arzt (1997). 

a) b) 

a) b) 
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Figure 4.1.3.3: Formation of a semi-hexagonal faceted void a) Simulation result: 

( 3=m , 5=A , 0=θ , 5−=∆ vbg , 5=vbM , 10=χ ) b) SEM micrograph from 

the work of Sanchez et al. (1990). 

 

    
 

Figure 4.1.3.4: Formation of a faceted void a) Simulation result: ( 2=m , 5=A , 

0=θ , 10−=∆ vbg , 10=vbM , 100=χ ) b) TEM micrograph from the work of 

Greer (1998). 

 

    

 

Figure 4.1.3.5: Formation of a faceted slit like element a) Simulation result: 

( 2=m , 5=A , 0=θ , 10−=∆ vbg , 10=vbM , 100=χ ) b) SEM micrograph from 

the work of Joo and Thompson (1997). 

 

Even though these comparisons are only qualitative, they validate the model, used 

for the simulation of void morphological evolution, in terms of its capabilities to 

capture a wide range of complex non-linear dynamical phenomena. 

a) b) 

a) b) 

a) b) 
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4.2. Void Intergranular Motion: Void - Grain Boundary Interactions 

 

In this section a comprehensive characterization of the void - grain boundary 

interactions is presented. In the following computer simulations one uses the 

boundary conditions that were obtained by the irreversible thermodynamic 

treatment of the triple junction, in which there are no assumptions such that, a 

constant dihedral angle or void tip morphology in the vicinity of the triple junction 

and a constant triple junction velocity as generally used in the literature. 

 

In the void - grain boundary interactions, the wetting parameter, λ , which is related 

to the dihedral angle, is a very important experimental parameter and may be 

described by assuming the identical left and right wetting parameters, described by 

the Eq. (2.3.2.28) as follows: 

 

σ
λλλ

g

gg

2
=== +−  (4.2.1) 

 
Commonly in the literature, the dihedral angle is described by the angle that the 

void phase makes between the two bulk grains (Verhoeven, 1975) as shown in 

figure 4.2.1.  

 

Figure 4.2.1: A surface tension force balance defining the dihedral angle ϕ . 
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From the Eq. (4.2.1) and the definition of the dihedral angle, the following 

relationship between these two factors can be found: 

 

1)cos(2 −= λϕ  (4.2.1) 

 

 

4.2.1. The Effect of Wetting Parameter on the Void - Grain Boundary 

Equilibrium Configuration: Isotropic Surface Diffusivity without 

Electromigration Force s and Void Growth Mechanism 

 

In order to test the validity of the irreversible thermodynamic treatment of the triple 

junction presented in Chapter 2, the various experiments were performed utilizing 

different values of the wetting parameters, λ , at the absence of any external forces 

such as electron wind. 

 

i. Voids Nucleated on the Grain Boundaries 

 

In the following experiments, the morphological evolution of a circular void that is 

nucleated on a grain boundary is presented in snapshots taken from different time 

steps. The angle between the lines AB  and AC  is exactly equal to the half of the 

dihedral angle. 

 

In figure 4.2.1.1 the wetting parameter 1=λ , and this corresponds to the o180  

dihedral angle or no wetting condition. As it may be seen from the snapshots figure 
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the circular void is stable for the above parameters. Figure 4.2.1.2 shows the 

evolution of angle CAB ˆ , which is initially o87  because of the used discretization 

procedure. As soon as the simulation start the angle CABˆ  evolves to the half of the 

dihedral angle, as dictated by the thermostatic theory. 

 

 
 

Figure 4.2.1.1: Void morphological evolution to the equilibrium configuration. The 

wetting parameter: o081  :angle dihedral ingcorrespond  theand  0 == ϕλ   

 

 
 

Figure 4.2.1.2: Evolution of angle CAB ˆ . The doted line: o092/ =ϕ  
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In the following figures the effect of the wetting parameter on the void equilibrium 

morphology can be seen. 

 

    

Figure 4.2.1.3: Void morphological evolution to the equilibrium configuration.  

a) The wetting parameter: 259.0=λ ; the corresponding dihedral angle: o051=ϕ  

b) The wetting parameter: 5.0=λ ; the corresponding dihedral angle: o120=ϕ  

 

    

Figure 4.2.1.4: Void morphological evolution to the equilibrium configuration.  

a) The wetting parameter: 707.0=λ ; the corresponding dihedral angle: o09=ϕ  

b) The wetting parameter: 866.0=λ ; the corresponding dihedral angle: o60=ϕ  

a) b) 

a) b) 
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Figure 4.2.1.5: Void morphological evolution to the equilibrium configuration.  

a) The wetting parameter: 966.0=λ ; the corresponding dihedral angle: o03=ϕ  

b) The wetting parameter: 1=λ ; the corresponding dihedral angle: o0=ϕ  

 

In figure 4.2.1.5-b the dihedral angle is equal to the zero, which correspond to the 

perfect wetting condition. In this last simulation on the contrary to the previous 

equilibrium simulations, the system cannot reach to the equilibrium. The only 

reason is the very long computation time necessary to complete the experiment. As 

the void wets the grain boundary, which means it is pulled along the grain boundary 

by capillary forces, the number of nodes necessary to describe the void 

circumference reaches to the very big numbers. Anyway in this experiment the 

tendency in the case of perfect wetting is simulated succesfully. 

 

Figure 4.2.1.6 shows the evolution of angle CABˆ , from initially o87  to the half of 

the dihedral angle o0 . 

a) b) 
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Figure 4.2.1.6: Evolution of angle CABˆ . The dihedral angle: o0 =ϕ  

 

 

ii. Voids Nucleated inside the Grains and just Touched to the Grain 

Boundaries 

 

In this section, the void grain boundary interaction in the case of circular void, 

which is nucleated inside the grains and just touched to the grain boundaries were 

simulated. 

 

 

In figures from 4.2.1.7 to 4.2.1.10, the snapshots from the void grain boundary 

interaction are presented by utilizing different wetting parameters, from no wetting 

to complete wetting conditions. In these experiments only the capillary forces are 

taken into account.  
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Figure 4.2.1.7: Void morphological evolution to the equilibrium configuration.  

a) The wetting parameter: 0=λ ; the corresponding dihedral angle: o018=ϕ  

b) The wetting parameter: 259.0=λ ; the corresponding dihedral angle: o150=ϕ  

 

    
 

Figure 4.2.1.8: Void morphological evolution to the equilibrium configuration.  

a) The wetting parameter: 5.0=λ ; the corresponding dihedral angle: o012=ϕ  

b) The wetting parameter: 707.0=λ ; the corresponding dihedral angle: o90=ϕ  

      

a) b) 

a) b) 
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Figure 4.2.1.9: Void morphological evolution to the equilibrium configuration.  

a) The wetting parameter: 866.0=λ ; the corresponding dihedral angle: o06=ϕ  

b) The wetting parameter: 966.0=λ ; the corresponding dihedral angle: o03=ϕ  

 

      
 

Figure 4.2.1.10: Void morphological evolution to the equilibrium configuration. 

The wetting parameter: o0  :angle dihedral ingcorrespond  theand  1 == ϕλ  

 

a) b) 
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These figures show that the void - grain boundary system starts to evolve towards 

the equilibrium configuration having proper dihedral angles dictated by 

thermostatic theory, as soon as they have in close contact with each other’s. The 

rate of this shape evolution process seems to be controlled by three independent 

unit processes, namely the mobility of surface drift-diffusion, and the generalized 

mobilities associated with longitudinal movement of triple junction and the 

transverse flow of matter through the junction, respectively. The first one 

corresponds to the long-range material transport, and the other two are closely 

related to in situ chemical species transfer reactions (highly localized fashion) 

taking place at the triple junction.  

 

Since our computer simulation experiments operate in the normalized and scaled 

time and space domains, in the absence of growth phenomenon and grain boundary 

drift-diffusion, one only deal with two normalized mobilities which are designated 

as longitudinal and transverse triple junction generalized mobilities. 

 

 

iii. Voids Nucleated at the Intersection of Three Grains 

 

In this section, the shape evolution behaviour of a void, which is nucleated at the 

triple junction of intersecting three grains, is demonstrated at the absence of the 

electron wind. 

 

In figures from 4.2.1.11 to 4.2.1.14, the snapshots from the void grain boundary 

interaction are presented by utilizing different wetting parameters, again from no 

wetting to complete wetting conditions.  
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Figure 4.2.1.11: Void morphological evolution to the equilibrium configuration.  

a) The wetting parameter: 0=λ ; the corresponding dihedral angle: o018=ϕ  

b) The wetting parameter: 259.0=λ ; the corresponding dihedral angle: o150=ϕ  

 

    
 

Figure 4.2.1.12: Void morphological evolution to the equilibrium configuration.  

a) The wetting parameter: 5.0=λ ; the corresponding dihedral angle: o012=ϕ  

b) The wetting parameter: 707.0=λ ; the corresponding dihedral angle: o90=ϕ  

a) b) 

a) b) 
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Figure 4.2.1.13: Void morphological evolution to the equilibrium configuration.  

a) The wetting parameter: 866.0=λ ; the corresponding dihedral angle: o06=ϕ  

b) The wetting parameter: 966.0=λ ; the corresponding dihedral angle: o03=ϕ  

 

      
 

Figure 4.2.1.14: Void morphological evolution to the equilibrium configuration. 

The wetting parameter: o0  :angle dihedral ingcorrespond  theand  1 == ϕλ  

a) b) 
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In figure 4.2.1.13-a the dihedral angle is o06=ϕ , and the corresponding 

equilibrium configuration is a triangle, where the node curvatures is exactly equal to 

zero.  

 

Especially in figures 4.2.1.13-b and 4.2.1.14, there is a substantial change in the 

final shape of the void, namely, a steady state transformation from convex void 

counters towards the concave morphology in order to yield maximum penetration 

while still keeping the void volume invariant.  

 

This behavior shows that the concave morphology is the real equilibrium 

configuration for the voids, for which the dihedral angle is less than the o06 .  

 

This fact namely the negative curvature at the singularity is mentioned first time in 

the literature in this work (Ogurtani and Oren, 2002), as an outcome of a rigorous 

theory of surfaces and interfaces. 

 

These figures indicate that the final void or cavity configurations are excellent 

agreement with those morphologies obtained in usual laboratory experiments as 

well as with the predictions of the thermostatic theories, which of course can only 

be applicable to the equilibrium shapes. 
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4.2.2. Isotropic Surface Diffusivity with Electromigration Forces and without 

Void Growth Mechanism - Prediction of Cathode Failure Times in 

Bamboo Structures 

 

In order to evaluate the effect of the current crowding on the morphology as well as 

on the mean time to failure (MTTF) of the interconnects with bamboo structure a 

series of simulation experiments is done on the void grain boundary interactions.  

 

In the following figures from 4.2.2.1 to 4.2.2.7, the results of extensive computer 

simulation experiments on the void detachment process from the grain boundaries 

in aluminum bamboo interconnects are demonstrated.  

 

In these experiment the detachment kinetics of voids, which are initially situated or 

nucleated at the grain boundaries is investigated. 

 

Since the specific Gibbs free energy density of aluminum for the free surface and 

for the grain boundary is equal to 2980.0 −Jm  and 2324.0 −Jm  respectively (Liu et 

al., 2001), in all of the following series of experiments the wetting parameter is 

taken as 165.0=λ . 
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Figure 4.2.2.1: Void detachment process for different normalized electron wind 

intensities; the normalized interconnect with: 4.1=w  
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Figure 4.2.2.2: Void detachment process for different normalized electron wind 

intensities; the normalized interconnect with: 5.1=w  
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Figure 4.2.2.3: Void detachment process for different normalized electron wind 

intensities; the normalized interconnect with: 75.1=w  

 

 



 160 

    

    

    
 
 

Figure 4.2.2.4: Void detachment process for different normalized electron wind 

intensities; the normalized interconnect with: 0.2=w  
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Figure 4.2.2.5: Void detachment process for different normalized electron wind 

intensities; the normalized interconnect with: 5.2=w  
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Figure 4.2.2.6: Void detachment process for different normalized electron wind 

intensities; the normalized interconnect with: 0.5=w  
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Figure 4.2.2.7: Void detachment process for different normalized electron wind 

intensities; the normalized interconnect with: 5.7=w  
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The profound effect of the electron wind intensities χ on the shape evolution 

dynamics is observed in thin film aluminum interconnects. The relationship 

between the void detachment normalized time and the electron wind intensity is 

presented very systematic fashion in figure 4.2.2.8 for different normalized 

interconnect widths, in the range of 1.4 to 7.5.  

  

 

Figure 4.2.2.8: Void detachment normalized time vs. electron wind intensity graph 

for different normalized interconnect widths. 

 

As can be seen immediately from the double logarithmic graphs in figure 4.2.2.8 

that all those experimental points for a given normalized line width lie down on a 
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straight line; and the following general relationship between the void detachment 

normalized time and the electron wind intensity may be written directly: 

 

)()(),( ws
d wiwt χχ =  (4.2.2.1) 

 

in order to find the normalized interconnect width, w , dependence of the intercept 

)(wi  and the slope )(ws  in Eq. (4.2.2.1), for each w ,  )(wi  and )(ws  were found 

by using a least square data fitting method. And the relevant data can be seen in 

figure 4.2.2.9 and 4.2.2.10 for the intercept and the slope respectively. 

 

 

 

Figure 4.2.2.9: Intercept vs. normalized interconnect width.  

 

From the data points, given in figure 4.2.2.9, the following relationship, whose 

graph can also be seen in the figure as the solid line, is found for the w  dependence 

of the intercept;  
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





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wi  (4.2.2.2) 

 

 

 

Figure 4.2.2.10: Slope vs. normalized interconnect width. 

 

Similarly, from the data points, given in figure 4.2.2.10, the following relationship, 

whose graph can also be seen in the figure as the solid line, is found for the w  

dependence of the slope; 

 

( ) 










+
−−=

55.0

1
1155.1)(

w
ws  (4.2.2.3) 

 

By applying the inverse scaling procedures utilizing the normalized parameters that 

are given in Chapter 2.4 to our analytical findings deduced from Fig. 4.2.2.11, one 

can easily find the following equation for the void-grain boundary detachment time: 
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In this model it is assumed that the interconnect failure takes place at the cathode 

end of the line by the accumulation of the voids, which are initially trapped or 

nucleated at the grain boundaries, under the action of the applied electromigration 

forces. Figure 4.2.2.11 shows the representation of such a failure mechanism. 

 

 

 

Figure 4.2.2.11: Cathode pad failure mechanism by loosing the electrical contact at 

the cathode. a) Interconnect with initially nucleated voids b) Failed interconnect. 

 

In Eq. (4.2.2.4), ),( orwi and ),( orws  are given by the present choice of wetting 

parameter, which is equal to 165.0=λ , and it is found that this parameter is 

sensitive to the wetting parameter, therefore the given formulas is in progress for 

only aluminum interconnects.  
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These simulation findings may be utilized even more effectively if one collaborates 

them, as a first order approximation with the analytical theory of Ho (1970)  for a 

circular void in an infinite conductor, which gives the steady-state velocity by the 

relationship; 

 

 
ˆ2

o

eZ jv
r

σ σ ρΩ Μ=  (4.2.2.5) 

 

Therefore, the mean flight time for a void between two successive bamboo grain 

boundaries may be estimated as  
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where gl  is the mean distance between bamboo grain boundaries or the grain size.  

 

Since the detachment and the flight constitute two series or consecutive unit 

operations before the failure to occur, the effective cathode-pad failure time (CPFT) 

associated with a void initially nucleated at the th
bn  bamboo grain is given by; 
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Since generally in the literature the unit of MTTF is given by hours it is convenient 

to write the Eq. (4.2.2.7) in terms of hours: 
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where bn  is the mean number of bamboo grain boundaries that void is crossing 

before it contributes to the fatal breakdown at the cathode pad.  

 

By using CPFT expression given by Eq. (4.2.2.8), it is possible to find the upper 

and lower boundaries of lifetime for such a failure process. In order to calculate 

these mentioned boundaries for the possible failure times for interconnects with 

bamboo or even near-bamboo structures it is needed to know that the value of 

threshold or critical void size for detrapping. For a given system parameters there is 

a threshold value for the void size only above which the voids detraps from the 

grain boundary and below which the voids are stationary at the grain boundaries. 

 

In order to find this mentioned threshold value the necessary simulation 

experiments were carried out and the relevant data is presented in figure 4.2.2.12, in 

which the solid line is obtained by applying a best-fit procedure to the simulation 

data.  
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Figure 4.2.2.12: Electron wind intensity threshold value for the void detachment 

process vs. normalized interconnects width.  

 

The obtained formula for the electron wind intensity threshold for the void 

detachment from the experimental points is given by: 
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Similarly, by applying the inverse normalization procedure to Eq. (4.2.2.9), the 

critical radius for void detachment is found as a function of interconnect width and 

the applied current density and it is given by:   
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In figure 4.2.2.13, the graph of critical void size for the detachment vs. applied 

current density for different interconnect widths can be seen.  

 

 

 

Figure 4.2.2.13: Critical void size for the detachment vs. applied current 

density for different interconnect widths. 

 

The upper bond cathode failure time (UBCFT) can be estimated by assuming that 

the grain boundary in the neighborhood of the anode may also contribute to the 

CPFT phenomenon by dismissing only one void, which is the largest in size to 

move or detach from the grain boundary to break down the electrical contact at the 

cathode pad. From Eq. (4.2.2.10) this void size, which may be called as maxr , can 

be calculated and given by the following expression: 
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The upper value of bn , which now may be used in Eq. (4.2.2.8) can be estimated 

by knowing the location of the grain boundary situated just next to the anode pad, 

namely, 1−=
g

b
L

n
l

 where L is the interconnect length. The substitution of these 

values of bn  and maxr  in Eq. (4.2.2.8) immediately reveals the expression for 

UBCFT as:  
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 (4.2.2.12) 

 

Similarly the lower bond cathode failure time (LBCFT) can be formulated by the 

following argument. The connection presented by Eq. (4.2.2.8) immediately 

indicates that an interior void that is nucleated or trapped at the grain boundary 

having a radius just at the onset of the threshold level for the detrapping to occur is 

more detrimental for the catastrophic failure of interconnects at the cathode pads 

compared to any other larger interior voids. Consequently the lower bond for the 

cathode failure time (LBCFT) for interconnects with bamboo or even near-bamboo 

structures may be calculated by considering only those voids having threshold or 

critical size for detrapping. The substitution of crtr , which is given by the Eq. 

(4.2.2.10), into Eq. (4.2.2.8) for the value of or  and by taking 1=bn , one obtains 

the following expression for LBCFT after some trivial manipulations: 
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Since in the literature only the median time to failure (MTTF) or the time for the 

50% failure are reported, one may add some raw statistics into Eq. (4.2.2.8) by 

taking into account the fact that each grain boundary is a potential site for the 

nucleation and growth of a void having critical size. Then only those grain 

boundaries, which are situated at the mid positions of the sampling interconnects 

and ejecting voids with critical size will be mainly responsible in contributing to the 

measured values of MTTF assuming that the test specimens are equally partitioned 

by the bamboo grains. Hence, one may have the following trivial expression for 

MTTF, which can be deduced from Eq. (4.2.2.8) by taking the 
g

b
L

n
l2

= , 
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In order to test the prediction power of these formulas, they are tested with the 

experimental findings in the literature in terms of MTTF and temperature or current 

density. Initially, the temperature effect on the MTTF were investigated where the 
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aluminum interconnect test materials chosen for this representation have the 

structural parameters tabulated in table 4.2.2.1, as deduced from the experimental 

studies performed by Black (1969) in near-bamboo, Schreiber and Grabe (1981) in 

polycrystalline and Lytle and Oates (1992) in bamboo aluminum lines. 

 

Table 4.2.2.1: Aluminum structural parameters used in the experimental literature. 

 

Structural 

Parameters  

Black  

(1969) 

Schreiber and 

Grabe (1981) 

Lytle and 

Oates 

(1992) 
w2  ( µ ) 15 10 1.25 

L ( µ ) 1372 800 6100 

gl ( µ ) 8 1.5 1.2 

j ( 2−MAcm ) 0.75 1 3 

T ( Ko ) 400-550 425-525 460-550 
 

Line Type 
 

Near-
Bamboo Polycrystalline Bamboo 

 

 

Table 4.2.2.2: Aluminum parameters, used in the experimental literature and the 

necessary universal constants. 

 
 

Aluminum Parameters 
 

 

Universal Constants 
 

AlZ  8 e   19106.1 −⋅ C  

Alρ  81074.2 −⋅ mohm⋅  
k  231038.1 −⋅ KatomJ o/ −  

AlσΩ  291066.1 −⋅ 3−m  

Alhσ  101086.2 −⋅ m  

Algσ  98.0 2−⋅ mJ  

 

 

Kds Visual
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The value of effective charge, AlZ , given in Table 4.2.2.2, gives the most 

consistent analysis of the data concerning the current and temperature dependence 

of experimentally observed MTTF values reported in the literature. 

 

In figure 4.2.2.14 the experimental median time to failure versus inverse 

temperature data on the aluminum interconnect with bamboo or near-bamboo 

microstructures, which are reported by three different authors are presented as a 

semi-logarithmic plot in connection with the best matching MTTF and/or LBCFT 

curves. 

 

 

 
Figure 4.2.2.14: Cathode failure time vs. inverse temperature. 
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The experimental findings by Black (1969) for large crystallites and Lytle and 

Oates (1981) for the no-voids specimens are analyzed by MTTF curve fittings, 

which resulted a new set of diffusion coefficients for the void and/or the technical 

surface atomic migration such as )sec(100.2 12/84.02 −−−⋅= meD kTeV  and 

)sec(100.1 12/84.02 −−−⋅= meD kTeV , respectively. Test specimens used by these 

authors have the median line width versus grain size ratios of about glw /2 =1.9 and 

1.0, respectively, which are also tested at different current densities. The SEM 

micrographs shows that void responsible for the line failure is nucleated at the 

Al/SiO2 interface, and most probably at the triple junction between the intersecting 

grain boundary and the technical surface. This also explains why one has obtained 

high activation enthalpies for these specimens. Because of the contamination of the 

void surface by oxygen and silicon atomic species during the nucleation stage, a 

new set of trap centers for the vacancies are created there, which inhibits their 

motion by contributing an extra binding energies to the activation enthalpy of 

motion, and in addition it may cause substantial decrease in their concentration as 

well. 

 

The most interesting situation in figure 4.2.2.14 arises in the analysis of the data 

presented by Schreiber and Grabe (1981) in terms of LBCFT formula utilizing the 

microstructure information given by these authors, which indicates that the line 

width versus grain size ratio is about equal to 4. In this case, namely for the 

polycrystalline materials LBCFT formula developed above results a best fit by 

employing a diffusion coefficient for the void surface mass transfer as 

)sec(105.1 12/62.06 −−−⋅= meD kTeV
σ , which is in agreement with the mono-
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vacancy diffusion coefficient in aluminum reported by Seeger and Mehrer (1969), 

namely )sec(107.3)( 12/62.06 −−−⋅= meAlD kTeV
v . This finding strongly supports 

the fact that the specimens tested by Schreiber and Grabe (1981) are super saturated 

by mono-vacancies, which are created by the dislocation climb during the 

relaxation of the (tensile) hydrostatic thermal stresses caused by rigid encapsulation 

and /or due the stiff substrate attachment procedure. 

 

After temperature test, the effect of current density on the MTTF are tested with the 

experimental findings in the literature, where the aluminum interconnect test 

materials chosen for this representation have the structural parameters tabulated in 

table 4.2.2.3, as deduced from the experimental studies performed by Black (1969) 

and Schreiber and Grabe (1981) in bamboo aluminum lines and Lytle and Oates 

(1992) in bi-crystal aluminum lines. 

 

Table 4.2.2.3: Aluminum structural parameters used in the experimental literature. 

 

Structural 

Parameters  

Kinsborn  

(1980) 

Cho and Thompson 

(1989) 

Longworth and Thompson  

(1992) 

w2  ( µ ) 1 2.2 2 

L ( µ ) 250 100 1000 

gl ( µ ) 10 3 500 

j ( 2−MAcm ) 2.0 1.2 2.5 

T ( Ko ) 473 548 523 
 

Line Type 
 

Bamboo Bamboo Bi-crystal 
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In figure 4.2.2.15, the data, obtained from the works of these mentioned authors, are 

plotted by utilizing Eqs. (4.2.2.12,13 and 14) on a double logarithmic scale as a 

function of applied current density. In this plot in order to obtain a better view the 

value of cathode failure times are multiplied with 10 and 100 for the data of 

Kinsborn (1980) and of Longworth and Thompson (1992) respectively.  

 

 

Figure 4.2.2.15: Cathode failure time vs. applied current density (Solid lines: 

UBCFT, dotted lines: MTTF, dashed lines: LBCFT, dad-dashed line: LGMCFT). 

 

In the computer simulation plots reproduced in this figure, the void surface 

diffusion coefficient σD  and the effective value of Z  are chosen according to that 
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findings by reevaluating the experimental MTTF versus temperature data presented 

in figure 4.2.2.14 as )sec(105.1 12/62.06 −−−⋅= meD kTeV
σ  and 8=Z  respectively. 

 

As can be seen immediately from the plots presented in figure 4.2.2.15 that one has 

with an exception of bi-crystal excellent agreements between the theory and the 

experimental results, which are selected from three different laboratories that are 

utilizing completely different microstructures, current densities and temperatures. 

For bamboo and near-bamboo structures the correlation between theoretical and 

experimental MTTF values are almost perfect. In the case of bi-crystals 

experimental points lie at the mid of the upper bond and lover bond curves in the 

logarithmic scale. By the way for bi-crystals MTTF formula given by Eq. (4.2.2.14) 

is exactly equivalent to the expression for LBCFT formula given by Eq. (4.2.2.13). 

Therefore a priory one may use the logarithmic mean value of LBCFT and UBCFT 

expressions, which is denoted as LGMCFT, as plotted in figure 4.2.2.15 this line 

yields better prediction than MTTF expression. Unfortunately, the published 

experimental observations in the literature have performed on those test specimens, 

which are not characterized sufficiently as far as the microstructures are concerned.  

 

As can be seen from figure 4.2.2.15 that both median times to failure reported by 

above cited authors (Longworth and Thompson, 1992) for [ ]10013Σ  and 

( ) ( )100/115  bi-crystals are in agreement with our prediction utilizing LGMCFT 

formulation. However, it seems that this agreement is fictitious because the 

appearance and location of failure sites observed by Longworth and Thompson 
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(1992) indicate that the failure mechanism is likely to involve an accelerated grain 

boundary grooving induced by electromigration.  

 

Experimental current density exponent reported for polycrystalline aluminum in the 

literature (Chang and Thompson, 1997; Arzt et al., 1996) shows rather a wide range 

of values 6    to1=n  depending upon the alloying elements, the microstructure, the 

processing and service conditions, and the method of data analysis. According to 

Chang and Thompson (1997) and Arzt et al. (1996) the current-density dependence 

of the MTTF of a single-crystal Al conductor line reveals that the exponent n  is 

closer to 2−  rather than 1−  and the activation enthalpy of the process is about 

eV 0.1 . The value of the current exponent urged them to speculate that the 

nucleation of void is the rate controlling step rather than the void motion and 

growth in their experimental studies. In order to explain the activation enthalpy in 

this magnitude, which does not coincide with any known drift-diffusion paths, these 

authors made further conjecture that the drift-diffusion path goes through the 

interfacial layer between Al and 32OAl . However, Schreiber (1981) clearly states 

that up to now no one has even measured the electromigration kinetics at the 

technical surfaces such as ( 32 - OAlAl ) interface. Because of the fact that the 

existence of the strong covalent bond between chemical species such as aluminum 

and oxygen at that interface reduces drastically not only the electrical conduction 

but also the atomic hopping motion through the vacancy exchange mechanism 

which relies on the bound breaking and bending during the vacancy formation and 

displacement, respectively.  
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The careful measurements by Schafft et al. (1985) on Al lines covered with 2SiO  

passivation layers revealed the effect of heating on n and by knowing the 

temperature increase of the line they were able to subtract its contribution from the 

measured MTTF are obtained 5.1−=n . Liu et al. (2001) obtained exactly same 

current exponent n for the void growth rate, which is propagating along the grain 

boundary, in interconnects with an electrical current. Similarly Suo et al. (1994) 

and Klinger et al. (1966) found that the slit propagation speed is proportional to 

2/3
0E , which yields an equivalent current exponent since MTTF is inversely 

connected to the propagation velocity. 

 

For the complete interconnect failure process, a value of 2−=n  as a current 

exponent was introduced by Black (1969) based on the assumption that the 

momentum transfer from electrons to Al atoms is proportional to the Al flux and 

the drift velocity of electrons. This is in contradiction to the common atomistic 

description of electron transport (Wever, 1973). A more rigorous derivation of 

2−=n  by Shatzkes and Lloyd (1986) and Kirchheim and Kaeber (1991) relies on 

the assumption that the time necessary for the attainment of a supersaturation of 

vacancies in semi-infinite Al line is equal to the median time to failure, MTTF. 

Kirchheim and Kaeber (1991) also observed that if the MTTF values are plotted 

with respect to the current density, j , instead of the reduced current density 

( )critjj −  one would get the slope about 5.1−=n  in double logarithmic scale. All 

these model calculations inherently assume that the interconnect failure takes place 

at the cathode pad (or stud) by the accumulation or creation of voids in that region. 

Therefore, the failure mechanisms associated with the slit or wedge shape defects 
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formation by growing inter or edge voids while they are proceeding along the 

interconnect are completely ignored by these authors (Black, 1969; Shatzkes and 

Lloyd, 1986; Kirchheim and Kaeber, 1991). 

 

The MTTF concept developed in this study was also used for the determination of 

current exponent. In order to do that the structural parameters tabulated in table 

4.2.2.3 were used. In figure 4.2.2.16 the MTTF vs. applied current density graph 

can be seen for a wider range of applied current density and without any 

multiplication as done in figure 4.2.2.15. 

 

 
Figure 4.2.2.16: MTTF vs. applied current density.  
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Figure 4.2.2.16 shows clearly that the apparent current exponent is given by 

2/3−≅n  and 1−=n  for low and high current density domains, respectively, 

having a smooth transition point, which is strictly depending upon the grain size. 

The large grain size prefers to have a lower current density transition point than the 

small grain size materials. 

 

As far as the current density dependence is concerned the MTTF relationship, 

which can be directly applicable to the pre-existing (the stress induced voids) over-

critical size voids indicates that there may be two different regimes exist namely 

low current density region and high current density region. The first regime is 

governed by the first term of Eq. (4.2.2.14), namely detachment term, and the 

second regime is controlled by the second term of Eq. (4.2.2.14), which is noting 

but the mean flight time of a void before it reaches the cathode pad or stud. 

 

Similarly, according to figure 4.2.2.15, the curves, which represent the UBCFT for 

the selected, interconnect system parameters clearly indicate that the difference 

between LBCFT and UBCFT increases with the current density. The current 

exponent is found to exactly 1−=n , and UBCFT lines are in agreement with the 

experimentally observed upper bond for the lognormal distribution of failure times 

with wide variety of microstructures.  

 

According to the relationship UBCFT, which is the only expression presented 

above that involves a linear line width 2 0w  dependence is not in accord with the 

suggestion made by Arzt et al. (1996) for the bamboo structures. They found that, 
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as 0w  is decreased, median time to failure MTTF decreases to a minimum and then 

increases continuously having a turning point at about 2 2/0 ≅gw l . Actually Arzt 

et al. (1996) clearly stated that when grain size and line width are comparable, a 

‘near bamboo’ structure results with strong flux divergences at the ends of the 

polycrystalline segments. Therefore, one may speculate that the region studied by 

Cho and Thompson (1989) where the grain size is less than the line width should be 

considered as polycrystalline material rather than the simple bamboo structure as 

suggested by Arzt et al. (1996). Eq. (4.2.2.14) is also clearly reveals that the mean 

lifetime is directly proportional with the interconnect line length or the stud-to-stud 

distance. 
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CONCLUSIONS 

 

 
A completely normalized and scaled partial differential equation obtained by using 

irreversible thermodynamic treatment of morphological evolution of curved void 

surface layer, interacting with the grain boundaries, at the presence of 

electromigration-induced forces. This phenomenological treatment is very useful 

for the computer simulation studies of electromigration phenomena in metallic thin 

film interconnects.  

 

The computer experiments clearly indicate the importance of the surface diffusion 

anisotropy for the open circuit failures in interconnects by leading the premature 

formation of a slit or wedge shaped void circuit configuration, and the further 

enhancement of this deterioration due to void growth process caused by 

supersaturated vacancies in the bulk matrix.  

 

In order to increase the lifetime of the metallic interconnect thin films having 

bamboo structure one should choose the highest symmetry plane and the most 

close-packed direction, such as { }111 011  in fcc metals and alloys as a texture. 

The normalized failure time ft  indicates that for a given electromigration force 

intensity; the surface diffusivity should be kept as small as possible. In the case of 
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anisotropic surface diffusivity, this requirement can be achieved by proper texture 

selection as described above. Another possibility may be to use certain doping 

elements that preferentially segregate at void interface and having high affinity to 

trap mobile vacancies in so doing hinder their hopping motion.  

 

The normalized growth rate parameter ( vbvb g∆Μ̂ ) should also be kept as small as 

possible. In order to give an idea for the importance of this parameter, aluminum 

interconnect material properties are utilized, and it is found that 1ˆ −=∆Μ vbvb g  

corresponds to hour/10 21µ−  in the rate of void area increase at room temperature, 

which is factor of three smaller than the value being employed in the work of Kraft 

and Arzt (1997) in their computer simulation studies, where electron intensity 

parameter is about 1=χ . The achievement of this second condition is more 

complicated because it may depend on many factors through generalized mobility 

as well as the Gibbs free energy of transformation. Since vbg∆  is a normalized 

quantity, this second requirement can be partially achieved by increasing the surface 

specific Gibbs free energy by doping with certain alloying elements that prefers 

segregation at free surfaces (Ogurtani, 1975; 1979). In addition, 0≤∆ vbg  relies on 

the vacancy supersaturation at the bulk region. Any trapping sites for vacancies 

such as alloying elements having large hydrostatic strain field, 0>>λTr , 

(compression) may be very effective to hinder the growth process. Similarly, nano-

size finely dispersed second phase particles and/or inclusions, which are generating 

large hydrostatic stress fields 0>>σTr  will be very powerful agents to inhibit 

growth phenomenon, because they do not only trap the vacancies ( 0=∆ vbg ), but 
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also create barriers ( 0ˆ =Μ vb ) for the motion of the interface between void and 

bulk phase. 

 

It may be also stated that the most important stage in the development of the void, 

which cause damage is the heterogeneous nucleation of vacancy clusters to form 

void embryos just at the interface between substrate (and/or passivation layer) and 

the interconnect matrix. The rate of occurrence of this event could definitely be 

controlled by selecting those substrate materials having very high surface specific 

Gibbs free energies compared to the specific Gibbs free energy associated with the 

interface between substrate and the interconnect. 

 

The present computer simulation studies have resulted certain fundamental and 

analytical connections concerning the void-grain boundary detachment time and the 

threshold level of the normalized electron wind intensity at the on set of the 

detrapping process. These expressions are combined together to produce three 

important and technologically useful relationships in the evaluation of the mean 

time to failure or the upper and lower bonds for the life time of an interconnect in 

terms of the applied current density, surface diffusivity, and the structural 

parameters such as grain size, line width and the interconnect stud to stud length. 

Even though these expressions obtained for an isotropic bamboo structure they still 

give excellent prediction of MTTF not only for the near-bamboo structures but also 

for the polycrystalline or bi-crystalline interconnects as can be easily anticipated 

from figure 4.2.2.15.  
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Unfortunately in general, experimental evidence (Chang and Thompson, 1997); 

Arzt et al., 1996; Seeger and Mehrer, 1969) indicates that the heterogeneous 

nucleation of voids at the specimen edges decorated by triple junctions is 

predominant mechanisms in polycrystalline materials (bamboo or near bamboo 

structures), the rate of which is few orders of magnitude higher than the 

homogenous nucleation of interior voids. Therefore one should try to inhibit 

heterogeneous nucleation at the technical specimen surfaces by introducing 

compression stresses utilizing special coating material and thermo mechanical 

treatments. 

 

This model, however still does not take into account explicitly the incubation time 

for the homogeneous nucleation of interior voids by assuming a priory that the rate 

controlling unit processes are the void detachment from the grain boundaries and its 

migration kinetics between two successive boundaries. Therefore, if one could 

suppress the heterogeneous nucleation of the edge voids at the triple junction that is 

the intersection point between bamboo grain boundary and the technical surface of 

the interconnect, then substantial improvement in the interconnect life time may be 

realized. One way of achieving this objective is to produce some kind of hot 

sputtered coating layer on the cold interconnect substrate that should generate 

residual compressive stresses at the technical surfaces at the device operating 

temperature. By this way it is possible to inhibit vacancy clustering and eventually 

void nucleation at the specimen edges and triple junctions. One order of magnitude 

enhancement obtained by Arzt et al. (1996) in Al-Si-Cu interconnects by utilizing 

hot sputtering conditions rather then the cold sputtering justifies this speculation 

that the compressive stresses at the technical surface are very important agent to 
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inhibit the heterogeneous nucleation and thereby to improve the service life of the 

interconnects. 

  

The present theory may be very useful to obtain the full knowledge of the surface 

diffusivities by furnishing not only the activation enthalpies but also the diffusion 

constant denoted by oD  in the literature. Analysis of the numerous experimental 

data cited in this thesis (Black, 1969; Cho and Thompson, 1989; Longworth and 

Thompson, 1992; Lytle and Oates, 1992; Schreiber and Grabe, 1981; Kisbron, 

1980) gives very consistent and highly accurate values for diffusion constant and 

the enthalpy namely: 6 21.5 10 /secoD m−= ⋅  and eVQ 62.0= . These values are very 

close to those reported by Seeger and Mehrer (1969) for mono-vacancies in 

aluminum. Therefore the present simulation studies strongly reveal the fact that the 

inner void dictated failure mechanisms is solely controlled by the athermal mono-

vacancy diffusion along the void interface, which means that there is a substantial 

vacancy saturation in those test specimens reported above cited references. 

Similarly, in those interconnect specimen where the failure occurs by voids 

nucleated at the technical surfaces or edges the failure kinetics has completely 

different drift-diffusion parameters, and in the case of aluminum can be given as 

.sec/100.2 2)84.0(2 meD eV−−⋅=σ   

 

As a final point, the followings are the future recommendations:  

 

As discussed in this thesis, Gibbs free energy enters into the formulation, which is 

in general not constant, but rather a function of space and time due to any possible 
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compositional variations at the reaction front during the void evolution 

phenomenon. Therefore, the exact solution of the growth problem still involves the 

complete numerical solution of the time dependent diffusion equation with drift 

(convective) term, and coupled to pseudo-static electric field by utilizing proper 

boundary and initial conditions. 

 

The real challenging problem in the repertoire is the simulation of Blech Effect 

concurrently occurring with void evolution dynamics in those interconnects, which 

are supported or encapsulated by the stiff insulating materials causing extremely 

high stresses (tension and/or compression) during the unavoidable process and 

operation oriented thermal cycling treatment.  
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APPENDIX-A 
 
 
 

DEFINITIONS OF THE INPUT PARAMETERS 
 

 
  
 
 
ro:  the initial void radius 

e:  void exantricity 

shape:  void shape parameter 

deltat:  initial time interval 

t:  initial loop number 

nl:  final loop number 

epsmin: minimum segment length used in the remeshing process 

epsmax: maximum segment length used in the remeshing process 

ksi:  normalized electron wind intensity 

time:  real time 

mint:  integration segment number (odd) 

sl:  interconnect length 

sw:  interconnect width 

mdiv:  number of division 

vsl:  void segment length coefficient 

dm:  mean segment lenght 

delta:   grain boundary thickness 

omega: atomic volume 

gb1:  node number or the location of the first grain boundary 

dihedral1: equilibrium dihedral angle between the first grain boundary and the 

void 
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lamda1:  wetting parameter for the first grain boundary 

tat1:  first grain boundary tilt angle 

mfold1: half-fold number for the first grain 

adif1:  anisotropy intensity for the first grain 

tang1:  texture tilt angle for the first grain 

gb2:  node number or the location of the second grain boundary 

dihedral2: equilibrium dihedral angle between the second grain boundary and 

the void 

lamda2:  wetting parameter for the second grain boundary 

tat2:  second grain boundary tilt angle 

mfold2: half-fold number for the second grain 

adif2:  anisotropy intensity for the second grain 

tang2:  texture tilt angle for the second grain 

mgb:  grain boundary longitudinal mobility 

tmgb:  grain boundary transverse mobility 

mdrift:  grain boundary drift mobility 

mobility: normalized bulk mobility coefficient 

eta:  normalized bulk gibbs free energy 
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APPENDIX-B 
 
 
 

LIST OF COMPUTER PROGRAM 
 

 
  
/*Electromigration*/ 
 
#include "p2c/p2c.h" 
#include <stdlib.h> 
 
typedef double arr1[701]; 
typedef double arr2[3][701]; 
typedef double arr3[701][701]; 
 
 
Static arr1    xi, x, y, dx, s, teta, alfa_, kapkap, beta, v, psi, 

diff, dteta, ekap, fieldi, fieldii, fieldt, fieldtn, 
drij, mrij, mu, c, fieldif, fieldiif, ulas, bre, cre, 
fx, fy, delu, rrq, rrq1, rrkq, kz, sk, gbn1, gbn2, 
gbn1t, gbn2t, vect, aefield; 

 
Static arr2    r, delr, anti, ru, rl, rit, no, lln, rj, rij, rm, 

rmrot, rs, nc, rc, rcijo, rcij, rcv, noc, rcw, trac; 
 
Static arr3   tt, ttt, tut; 
 
Static long    k, m, nl, mpow, ms, t, finstep, ka, kki, kkj, mint, 

mdiv, stackno, mm, mv, gb1, gb2; 
 
Static double  pi, ds, ro, e, rmax, rmin, control, newdata, gbdata, 

deltat, epstime, ww, sl, sw, time, shape, ao, are, 
brea, crea, xc, yc, epsmin, epsmax, sigma, ksi, dm, 
delta, sav, vsl, mobility, eta, mdrift, eep, es, dxx, 
dot, ddot, omega, dotp, vmax, mgb, tmgb, ta1, ta2, 
tat1, tat2, gbr1, gbr2, gbl1, gbl2, dihedral1, 
dihedral2, lamda1, lamda2, tang1, tang2, adif1, 
adif2, tta1, tta2, mfold1, mfold2, vtrans1, vtrans2, 
fieldup1, fieldup2, fielddown1, fielddown2, 
fieldleft1, fieldleft2, fieldright1, fieldright2, 
fieldgb1, fieldgb2, curve, sign, vmineq; 

 
Static FILE *f, *g; 
 
Static Char sy[256]; 
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/*auxiliary functions and procedures*/ 
 
 
/*this function determines the record time steps*/ 
 
Static long timer(m, e) 
long m, e; 
{ 
 long ki, powa; 
 powa = 1; 
 if (e != 0)  
 { 
  for (ki = 1; ki <= e; ki++) 
    powa *= m; 
 } 
  return powa; 
} 
 
/*this function finds the dot product of two vectors*/ 
 
Static double dotpro(a0, a1, a2, b0, b1, b2) 
double a0, a1, a2, b0, b1, b2; 
{ 
 return (a0 * b0 + a1 * b1 + a2 * b2); 
} 
 
/*this function finds the vector product of two vectors*/ 
 
Static Void vectorpro(a0, a1, a2, b0, b1, b2) 
double a0, a1, a2, b0, b1, b2; 
{ 
 vect[0] = a1 * b2 - a2 * b1; 
 vect[1] = a2 * b0 - a0 * b2; 
 vect[2] = a0 * b1 - a1 * b0; 
} 
 
/*this function finds the magnitude of the vectors*/ 
 
Static double magnitude(a, b, c) 
double a, b, c; 
{ 
 return sqrt(a * a + b * b + c * c); 
} 
 
/*this function finds the arcsin(teta)"*/ 
 
Static double arcsin_(okst) 
double okst; 
{ 
 double arcs, sens; 
 sens = 0.0000000001; 
 if (okst > 1 - sens)  
   arcs = pi / 2; 
 else if (okst < sens - 1)  
   arcs = pi / -2; 
 else if (okst < sens)  
 { 
  if (okst > -sens) 
    arcs = 0.0; 
  else  
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    arcs = atan(1 / sqrt(1 / (okst * okst) - 1)); 
 }  
 else 
    arcs = atan(1 / sqrt(1 / (okst * okst) - 1)); 
 if (okst < 0) 
   arcs = -arcs; 
 return arcs; 
} 
 
/*this function finds the angle between two vectors*/ 
 
Static double angle(a0, a1, a2, b0, b1, b2) 
double a0, a1, a2, b0, b1, b2; 
{ 
 double angles, dd; 
 dotp = dotpro(a0, a1, a2, b0, b1, b2); 
 dd = magnitude(a0, a1, a2) * magnitude(b0, b1, b2); 
 angles = arcsin_((a0 * b1 - a1 * b0) / dd); 
 if (dotp <= 0) 
   angles = pi - angles; 
 if (angles > pi) 
   angles -= 2 * pi; 
 if (angles < 0) 
   angles = 2 * pi + angles; 
 return angles; 
} 
 
/*this function finds the void area*/ 
 
Static double area(k, r) 
long k; 
double (*r)[701]; 
{ 
 long ki; 
 double areas; 
 areas = 0.0; 
 for (ki = 0; ki <= k - 2; ki++) 
   areas += (r[0][ki] * r[1][ki + 1] - r[1][ki] * r[0][ki + 1]) /                              

2; 
 areas += (r[0][k - 1] * r[1][0] - r[1][k - 1] * r[0][0]) / 2; 
 return areas; 
} 
 
/*production of a anticlockwise rotation matrix*/ 
 
Static Void antirotma(w) 
double w; 
{ 
 anti[0][0] = cos(w); 
 anti[0][1] = -sin(w); 
 anti[0][2] = 0.0; 
 anti[1][0] = sin(w); 
 anti[1][1] = cos(w); 
 anti[1][2] = 0.0; 
 anti[2][0] = 0.0; 
 anti[2][1] = 0.0; 
 anti[2][2] = 1.0; 
} 
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/*Gauss Jordan elimination method in the solution of simulataneous 
set equations au=b*/ 

 
Static Void trian(colon, tek, cift_) 
long colon; 
double *tek; 
double (*cift_)[701]; 
{ 
 arr3 cift; 
 long ki, kj, kk, de; 
 double tot, bol, max; 
 arr3 trio; 
 arr1 ddd; 
 for (ki = 0; ki <= colon; ki++) 
   cift[ki][colon + 1] = tek[ki]; 
 for (ki = 0; ki <= colon; ki++)  
 { 
  max = fabs(cift[ki][ki]); 
  de = ki; 
  for (kk = ki; kk <= colon; kk++)  
  { 
   if (max < fabs(cift[kk][ki]))  
   { 
    max = cift[kk][ki]; 
    de = ki; 
   } 
  } 
  if (de != ki)  
  { 
   for (kk = 0; kk <= colon + 1; kk++)  
   { 
    ddd[kk] = cift[ki][kk]; 
    cift[ki][kk] = cift[de][kk]; 
    cift[de][kk] = ddd[kk]; 
   } 
  } 
  bol = cift[ki][ki]; 
  for (kj = 0; kj <= colon + 1; kj++) 
    cift[ki][kj] /= bol; 
  for (kk = ki; kk <= colon; kk++)  
  { 
   if (kk != ki)  
   { 
    for (kj = 0; kj <= colon + 1; kj++) 
      trio[ki][kj] = cift[ki][kj] * cift[kk][ki]; 
    for (kj = 0; kj <= colon + 1; kj++) 
      cift[kk][kj] -= trio[ki][kj]; 
   } 
  } 
 } 
 ulas[colon] = cift[colon][colon + 1]; 
 for (ki = 1; ki <= colon; ki++)  
 { 
  tot = 0.0; 
  for (kj = 1; kj <= ki; kj++) 
    tot += ulas[colon - kj + 1] * cift[colon - ki][colon - kj + 1]; 
  ulas[colon - ki] = cift[colon - ki][colon + 1] - tot; 
 } 
} 
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/*main procedures*/ 
 
/*this procedure generates the upper and lower part of the strip*/ 
 
Static Void ulpart() 
{ 
 long kl; 
 for (kl = 0; kl <= mdiv*2; kl++)  
 { 
  ru[0][kl] = (kl - mdiv) * sl / mdiv; 
  ru[1][kl] = sw; 
  ru[2][kl] = 0.0; 
  rl[0][kl] = (kl - mdiv) * sl / mdiv; 
  rl[1][kl] = -sw; 
  rl[2][kl] = 0.0; 
 } 
} 
 
/*in this program ro should be always chosen as equal to unity 

which is simply the mean radius of a equivalent circular void 
having the same area*/ 

 
/*this procedure genarates the shape of the void*/ 
 
Static Void void_() 
{ 
 long kj, kl; 
 double TEMP; 
 xi[0] = 0.0; 
 kj = 0; 
 es = ds; 
 eep = ds * exp(-6 * log(10.0)); 
 while (es > eep)  
 { 
  while (xi[kj] < pi)   
  { 
   x[kj] = ro * sqrt(1 + e * e) * cos(xi[kj]) + ro * e * cos(shape 

* xi[kj]); 
   y[kj] = ro * sqrt(1 + e * e) * sin(xi[kj]) - ro * e * sin(shape 

* xi[kj]); 
   TEMP = -ro * sqrt(1 + e * e) * sin(xi[kj]) - shape * ro * e * 

sin(shape * xi[kj]); 
   dx[kj] = TEMP * TEMP; 
   TEMP = ro * sqrt(1 + e * e) * cos(xi[kj]) -  shape * ro * e * 

cos(shape * xi[kj]); 
   dx[kj] = ds / sqrt(dx[kj] + TEMP * TEMP); 
   xi[kj + 1] = xi[kj] + dx[kj]; 
   kj++; 
  } 
  m = kj - 1; 
  dxx = pi - xi[m]; 
  TEMP = -ro * sqrt(1 + e * e) * sin(xi[kj]) - shape * ro * e * 

sin(shape * xi[kj]); 
  es = TEMP * TEMP; 
  TEMP = ro * sqrt(1 + e * e) * cos(xi[kj]) - shape * ro * e * 

cos(shape * xi[kj]); 
  es = dxx * sqrt(es + TEMP * TEMP); 
  ds += es / (m + 2); 
  kj = 0; 
 } 
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 for (kl = m + 1; kl < m*2; kl++)  
 { 
  x[kl] = x[m * 2 - kl]; 
  y[kl] = -y[m * 2 - kl]; 
 } 
 x[m] = ro * sqrt(1 + e * e) * cos(pi) + ro * e * cos(shape * pi); 
 y[m] = ro * sqrt(1 + e * e) * sin(pi) - ro * e * sin(shape * pi); 
 y[m * 2] = y[0]; 
 x[m * 2] = x[0]; 
 k = m * 2; 
} 
 
/*this procedure generates 3-d vectors as position vectors and then 

loads them as columns on a node-position matrix denotes by 
r(x,y,t)*/ 

 
Static Void rxyt() 
{ 
 long kj; 
 for (kj = 0; kj < k; kj++)  
 { 
  r[0][kj] = x[kj]; 
  r[1][kj] = y[kj]; 
  r[2][kj] = 0.0; 
 } 
} 
 
/*this procedure combines the void and the strip*/ 
 
Static Void stack() 
{ 
 long kl; 
 for (kl = 0; kl <= mdiv*2; kl++)  
 { 
  rit[0][kl] = ru[0][kl]; 
  rit[1][kl] = ru[1][kl]; 
  rit[2][kl] = ru[2][kl]; 
 } 
 for (kl = mdiv * 2 + 1; kl <= mdiv*4+1; kl++)  
 { 
  rit[0][kl] = rl[0][kl - mdiv * 2 - 1]; 
  rit[1][kl] = rl[1][kl - mdiv * 2 - 1]; 
  rit[2][kl] = rl[2][kl - mdiv * 2 - 1]; 
 } 
 for (kl = mdiv * 4 + 2; kl <= mdiv*4+k+2; kl++)  
 { 
  rit[0][kl] = r[0][kl - mdiv * 4 - 2]; 
  rit[1][kl] = r[1][kl - mdiv * 4 - 2]; 
  rit[2][kl] = r[2][kl - mdiv * 4 - 2]; 
 } 
 stackno = mdiv * 4 + k + 2; 
} 
 
/*this procedure calculates difference vectors between successive 

position vectors and their magnitudes*/ 
 
Static Void delr1() 
{ 
 long kj, ki; 
 for (ki = 0; ki < k; ki++)  
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 { 
  if (ki == 0)  
  { 
   for (kj = 0; kj <= 2; kj++) 
     delr[kj][ki] = r[kj][0] - r[kj][k - 1]; 
  }  
  else  
  { 
   for (kj = 0; kj <= 2; kj++) 
     delr[kj][ki] = r[kj][ki] - r[kj][ki - 1]; 
  } 
 } 
 for (ki = 0; ki < k; ki++)  
 { 
  s[ki] = sqrt(delr[0][ki] * delr[0][ki] + delr[1][ki] * 

delr[1][ki] + delr[2][ki] * delr[2][ki]); 
 } 
} 
 
/*this procedure calculates the angle between the two successive 3-

d vectors and in given set of vectors. the range -p and +p*/ 
 
Static Void psir() 
{ 
 long ki; 
 teta[k - 1] = angle(delr[0][k - 1], delr[1][k - 1], delr[2][k - 

1], delr[0][0], delr[1][0], delr[2][0]); 
  for (ki = 0; ki <= k-2; ki++) 
    teta[ki] = angle(delr[0][ki], delr[1][ki], delr[2][ki], 

delr[0][ki + 1], delr[1][ki + 1], delr[2][ki + 
1]); 

} 
 
/*This procedure calculates the diffusivities for polycrystal 

interconnect lines*/ 
 
Static Void anisotropygb() 
{ 
 long ki; 
 double TEMP; 
 for (ki = 0; ki < k; ki++)  
 { 
  dteta[ki] = angle(1.0, 0.0, 0.0, delr[0][ki], delr[1][ki], 

delr[2][ki]); 
  if (ki <= gb1)  
  { 
   TEMP = cos(mfold1 * (dteta[ki] - tta1)); 
   diff[ki] = 1 + adif1 * (TEMP * TEMP); 
  }  
  else if (ki <= gb2)  
  { 
   TEMP = cos(mfold2 * (dteta[ki] - tta2)); 
   diff[ki] = 1 + adif2 * (TEMP * TEMP); 
  }  
  else if (ki > gb2)  
  { 
  TEMP = cos(mfold1 * (dteta[ki] - tta1)); 
  diff[ki] = 1 + adif1 * (TEMP * TEMP); 
  } 
 } 
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} 
 
/*This procedure calculates the diffusivities for single crystal 

interconnect lines*/ 
 
Static Void anisotropy() 
{ 
 long ki; 
 double TEMP; 
 for (ki = 0; ki < k; ki++)  
 { 
  dteta[ki] = angle(1.0, 0.0, 0.0, delr[0][ki], delr[1][ki], 

delr[2][ki]); 
  TEMP = cos(mfold1 * (dteta[ki] - tta1)); 
  diff[ki] = 1 + adif1 * (TEMP * TEMP); 
 } 
} 
 
/*this procedure calculates the local curvature and the local line 

normal vector at any given node knowing the successive segment 
vector set*/ 

 
Static Void kappa() 
{ 
 long ki, kj; 
 for (ki = 0; ki < k; ki++)  
 { 
  if (ki == k - 1) 
    alfa_[ki] =  atan(sin(teta[ki]) / (s[0] / s[ki] + 

cos(teta[ki]))); 
  else 
    alfa_[ki] =  atan(sin(teta[ki]) / (s[ki + 1] / s[ki] +   

cos(teta[ki]))); 
  kapkap[ki] = 2 * sin(alfa_[ki]) / s[ki]; 
  beta[ki] = (pi - 2 * alfa_[ki]) / 2; 
  antirotma(-beta[ki]); 
  for (kj = 0; kj <= 2; kj++) 
    no[kj][ki] =  anti[kj][0] * delr[0][ki] + anti[kj][1] * 

delr[1][ki] + anti[kj][2] * delr[2][ki]; 
  for (kj = 0; kj <= 2; kj++) 
    lln[kj][ki] = no[kj][ki] / magnitude(no[0][ki], no[1][ki], 

no[2][ki]); 
 } 
} 
 
/*this procedure calculates the normal unit vectors at the 

centroids for the upper and lower cut interfaces plus the void. 
Directions towards the interconnect material*/ 

 
Static Void noc1() 
{ 
 long kj, ki; 
 for (kj = 0; kj < k; kj++)  
 { 
  nc[0][kj] = delr[1][kj] / s[kj]; 
  nc[1][kj] = -(delr[0][kj] / s[kj]); 
  nc[2][kj] = 0.0; 
 } 
 for (ki = 0; ki < mdiv*2; ki++)  
 { 
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  noc[0][ki] = 0.0; 
  noc[1][ki] = -1.0; 
  noc[2][ki] = 0.0; 
 } 
 for (ki = mdiv * 2; ki < mdiv*4; ki++)  
 { 
  noc[0][ki] = 0.0; 
  noc[1][ki] = 1.0; 
  noc[2][ki] = 0.0; 
 } 
 for (kj = 0; kj <= 2; kj++)  
 { 
  for (ki = mdiv * 4; ki <= mdiv * 4 + k - 2; ki++) 
    noc[kj][ki] = nc[kj][ki - mdiv * 4 + 1]; 
 } 
 for (kj = 0; kj <= 2; kj++) 
   noc[kj][mdiv * 4 + k - 1] = nc[kj][0]; 
} 
 
/*this procedure calculates the centroid position vectors for the 
  void only*/ 
 
Static Void rcv1() 
{ 
 long ki, kj; 
 for (ki = 0; ki < k; ki++)  
 { 
  for (kj = 0; kj <= 2; kj++)  
  { 
   if (ki == k - 1) 
     rcv[kj][ki] = (r[kj][0] + r[kj][k - 1]) / 2; 
   else 
     rcv[kj][ki] = (r[kj][ki + 1] + r[kj][ki]) / 2; 
  } 
 } 
} 
 
/*this procedure calculates the centroid position vectors for the 
  whole system*/ 
 
Static Void rcw1() 
{ 
 long ki, kj; 
 for (ki = 0; ki <= stackno - 4; ki++)  
 { 
  if (ki < mdiv * 2)  
  { 
   for (kj = 0; kj <= 2; kj++) 
     rcw[kj][ki] = (rit[kj][ki + 1] + rit[kj][ki]) / 2; 
  }  
  else if (ki >= mdiv * 2)  
  { 
   if (ki < mdiv * 4)  
   { 
    for (kj = 0; kj <= 2; kj++) 
      rcw[kj][ki] = (rit[kj][ki + 2] + rit[kj][ki + 1]) / 2; 
   } 
  } 
  if (ki >= mdiv * 4)  
  { 
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   for (kj = 0; kj <= 2; kj++) 
     rcw[kj][ki] = (rit[kj][ki + 3] + rit[kj][ki + 2]) / 2; 
  } 
 } 
 for (kj = 0; kj <= 2; kj++) 
   rcw[kj][stackno - 3] = (rit[kj][mdiv * 4 + 2] + rit[kj][stackno 

- 1]) / 2; 
} 
 
/*indirect boundary element method*/ 
 
/*this is an electrostatic connection matrix utilizing the element 
  centroids, m is the numder of subsegment used in the integration 
  procedure*/ 
 
/*this procedure calculates the normal component of the electric 

field at the centroid positions on the boundary due to uniformly 
distrubuted charge, using IBEM*/ 

 
Static Void tin() 
{ 
 long ki, kj, kl, km; 
 double total, tot, rcos, rcms; 
 double TEMP; 
 kz[0] = 0.0; 
 kz[1] = 0.0; 
 kz[2] = 1.0; 
 mv = mdiv * 4 + 2; 
 mm = mdiv * 4 + k - 1; 
  
 for (ki = 0; ki < mdiv * 2; ki++) 
   sk[ki] = sl / mdiv; 
  
 for (ki = mdiv * 2; ki < mdiv * 4; ki++) 
   sk[ki] = sl / mdiv; 
  
 for (ki = 1; ki < k; ki++) 
   sk[mdiv * 4 + ki - 1] = s[ki]; 
 sk[mdiv * 4 + k - 1] = s[0]; 
  
 for (ki = 0; ki <= mm; ki++)  
 { 
  for (kj = 0; kj <= mm; kj++)  
  { 
   if (ki == kj) 
     tt[ki][kj] = 0.5; 
   else  
   { 
 
    if (ki == mm)  
    { 
     if (kj < mdiv * 2)  
     { 
      for (kl = 0; kl <= 2; kl++) 
        rcijo[kl][ki] = ( rit[kl][ki + 2] + rit[kl][mv] - 2 * 

rit[kl][kj]) / 2; 
      for (km = 0; km <= mint; km++)  
      { 
       for (kl = 0; kl <= 2; kl++) 
  rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 1] –  
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rit[kl][kj]) / mint; 
      } 
     } 
    } 
 
    if (kj == mm)  
    { 
     if (ki >= mdiv * 2)  
     { 
      if (ki < mdiv * 4)  
      { 
       for (kl = 0; kl <= 2; kl++) 
  rcijo[kl][ki] = (rit[kl][ki + 2] + rit[kl][ki + 1] - 2 *  

rit[kl][kj + 2]) / 2; 
       for (km = 0; km <= mint; km++)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][mv] –  

rit[kl][kj + 2]) / mint; 
       } 
      } 
     } 
    } 
 
    if (kj == mm)  
    { 
     if (ki < mdiv * 2)  
     { 
      for (kl = 0; kl <= 2; kl++) 
        rcijo[kl][ki] = ( rit[kl][ki + 1] + rit[kl][ki] - 2 *  

rit[kl][kj + 2]) / 2; 
      for (km = 0; km <= mint; km++)  
      { 
       for (kl = 0; kl <= 2; kl++) 
  rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][mv] - rit[kl][kj  

+ 2]) / mint; 
      } 
     } 
    } 
 
    if (kj == mm)  
    { 
     if (ki >= mdiv * 4)  
     { 
      if (ki < mm)  
      { 
       for (kl = 0; kl <= 2; kl++) 
  rcijo[kl][ki] = (rit[kl][ki + 3] + rit[kl][ki + 2] - 2 *  

rit[kl][kj + 2]) / 2; 
       for (km = 0; km <= mint; km++)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][mv] –  

rit[kl][kj + 2]) / mint; 
       } 
      } 
     } 
    } 
 
    if (ki == mm)  
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    { 
     if (kj >= mdiv * 2)  
     { 
      if (kj < mdiv * 4)  
      { 
       for (kl = 0; kl <= 2; kl++) 
  rcijo[kl][ki] = (rit[kl][ki + 2] + rit[kl][mv] - 2 *  

rit[kl][kj + 1]) / 2; 
       for (km = 0; km <= mint; km++)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 2] –  

  rit[kl][kj + 1]) / mint; 
       } 
      } 
     } 
    } 
 
    if (ki == mm)  
    { 
     if (kj >= mdiv * 4)  
     { 
      if (kj < mm)  
      { 
       for (kl = 0; kl <= 2; kl++) 
  rcijo[kl][ki] = (rit[kl][ki + 2] + rit[kl][mv] - 2 *  

rit[kl][kj + 2]) / 2; 
       for (km = 0; km <= mint; km++)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 3] –  

  rit[kl][kj + 2]) / mint; 
       } 
      } 
     } 
    } 
 
    if (ki < mdiv * 2)  
    { 
     if (kj < mdiv * 2)  
     { 
      for (kl = 0; kl <= 2; kl++) 
 rcijo[kl][ki] = (rit[kl][ki + 1] + rit[kl][ki] - 2 *  

rit[kl][kj]) / 2; 
      for (km = 0; km <= mint; km++)  
      { 
       for (kl = 0; kl <= 2; kl++) 
    rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 1] –  

  rit[kl][kj]) / mint; 
      } 
     } 
    } 
 
    if (ki < mdiv * 2)  
    { 
     if (kj >= mdiv * 2)  
     { 
      if (kj < mdiv * 4)  
      { 
       for (kl = 0; kl <= 2; kl++) 
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    rcijo[kl][ki] = (rit[kl][ki + 1] + rit[kl][ki] - 2 *  
rit[kl][kj + 1]) / 2; 

       for (km = 0; km <= mint; km++)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 2] –  

  rit[kl][kj + 1]) / mint; 
       } 
      } 
     } 
    } 
 
    if (ki < mdiv * 2)  
    { 
     if (kj >= mdiv * 4)   
     { 
      if (kj < mm)  
      { 
       for (kl = 0; kl <= 2; kl++) 
     rcijo[kl][ki] = (rit[kl][ki + 1] + rit[kl][ki] - 2 *  

rit[kl][kj + 2]) / 2; 
       for (km = 0; km <= mint; km++)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 3] –  

  rit[kl][kj + 2]) / mint; 
       } 
      } 
     } 
    } 
 
    if (ki >= mdiv * 2)  
    { 
     if (ki < mdiv * 4)  
     { 
      if (kj < mdiv * 2)  
      { 
       for (kl = 0; kl <= 2; kl++) 
  rcijo[kl][ki] = (rit[kl][ki + 2] + rit[kl][ki + 1] - 2 *  

rit[kl][kj]) / 2; 
       for (km = 0; km <= mint; km++)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 1] –  

  rit[kl][kj]) / mint; 
       } 
      } 
     } 
    } 
 
    if (ki >= mdiv * 2)  
    { 
     if (ki < mdiv * 4)  
     { 
      if (kj >= mdiv * 2)  
      { 
       if (kj < mdiv * 4)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rcijo[kl][ki] = (rit[kl][ki + 2] + rit[kl][ki + 1] - 2 *  
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  rit[kl][kj + 1]) / 2; 
        for (km = 0; km <= mint; km++)  
        { 
    for (kl = 0; kl <= 2; kl++) 
   rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 2]  

– rit[kl][kj + 1]) / mint; 
   } 
       } 
      } 
     } 
    } 
 
    if (ki >= mdiv * 2)  
    { 
     if (ki < mdiv * 4)  
     { 
      if (kj >= mdiv * 4)  
      { 
       if (kj < mm)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rcijo[kl][ki] = (rit[kl][ki + 2] + rit[kl][ki + 1] - 2 *  

  rit[kl][kj + 2]) / 2; 
   for (km = 0; km <= mint; km++)  
        { 
    for (kl = 0; kl <= 2; kl++) 
   rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 3]  

– rit[kl][kj + 2]) / mint; 
   } 
       } 
      } 
     } 
    } 
 
    if (ki >= mdiv * 4)  
    { 
     if (ki < mm)  
     { 
      if (kj >= mdiv * 4)  
      { 
       if (kj < mm)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rcijo[kl][ki] = (rit[kl][ki + 3] + rit[kl][ki + 2] - 2 *  

   rit[kl][kj + 2]) / 2; 
        for (km = 0; km <= mint; km++)  
        { 
    for (kl = 0; kl <= 2; kl++) 
   rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 3]  

– rit[kl][kj + 2]) / mint; 
   } 
       } 
      } 
     } 
    } 
 
    if (ki >= mdiv * 4)  
    { 
     if (ki < mm)  
     { 
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      if (kj >= mdiv * 2)  
      { 
       if (kj < mdiv * 4)  
       { 
   for (kl = 0; kl <= 2; kl++) 
   rcijo[kl][ki] = ( rit[kl][ki + 3] + rit[kl][ki + 2] - 2  

* rit[kl][kj + 1]) / 2; 
        for (km = 0; km <= mint; km++)  
        { 
         for (kl = 0; kl <= 2; kl++) 
 rc[kl][km] =  rcijo[kl][ki] - km * (rit[kl][kj + 2] –  

rit[kl][kj + 1]) / mint; 
   } 
       } 
      } 
     } 
    } 
 
    if (ki >= mdiv * 4)  
    { 
     if (ki < mm)  
     { 
      if (kj < mdiv * 2)  
      { 
       for (kl = 0; kl <= 2; kl++) 
 rcijo[kl][ki] = (rit[kl][ki + 3] + rit[kl][ki + 2] - 2 * 

rit[kl][kj]) / 2; 
       for (km = 0; km <= mint; km++)  
       { 
   for (kl = 0; kl <= 2; kl++) 
     rc[kl][km] = rcijo[kl][ki] - km * (rit[kl][kj + 1] –  

  rit[kl][kj]) / mint; 
       } 
      } 
     } 
    } 
 
    for (kl = 0; kl <= 2; kl++)  
    { 
     total = 0.0; 
     for (km = 1; km < mint; km++)  
     { 
      TEMP = magnitude(rc[0][km], rc[1][km], rc[2][km]); 
      tot = TEMP * TEMP; 
      total += rc[kl][km] / tot; 
     } 
     rcij[kl][ki] = total; 
     TEMP = magnitude(rc[0][0], rc[1][0], rc[2][0]); 
     rcos = TEMP * TEMP; 
     TEMP = magnitude(rc[0][mint], rc[1][mint], rc[2][mint]); 
     rcms = TEMP * TEMP; 
     rcij[kl][ki] += 1.0 / 2 * (rc[kl][0] / rcos + rc[kl][mint] /  

rcms); 
    } 
    tt[ki][kj] = sk[kj] / 2 / pi / mint * (noc[0][ki] * rcij[0][ki]  

+ noc[1][ki] * rcij[1][ki] + noc[2][ki] *  
rcij[2][ki]); 

   } 
  } 
 } 
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} 
 
/*c is the normal component of the electric field on the void plus 

strip surfaces due to the applied voltage along the x-axis.*/ 
 
Static Void elf() 
 
{ 
 long ki; 
 for (ki = 0; ki <= mm; ki++) 
   c[ki] = noc[0][ki]; 
} 
 
/*calculation of the electrostatic potential due to the boundary 

charge distribution at any point in the interior region or at the 
boundary*/ 

 
Static Void field() 
 
{ 
 long ki, kj, kl, km; 
 double eta, tot; 
  
/*below line generates mu that is the charge to be inserted in 

order to satisfy the neumann boundary condition along the void 
surface, by using procedure trian*/ 

 
 trian(mm, c, tt); 
 
 for (ki = 0; ki <= mm; ki++) 
   mu[ki] = -ulas[ki]; 
 
/*mu is a charge density function at a given segment which is 

assumed to be uniformly distributed along each segment.*/ 
 
 /*Calculation of grain boundary normal vectors*/ 
 
 /*gb1*/ 
 
 gbn1[0] = cos(ta1); 
 gbn1[1] = sin(ta1); 
 gbn1[2] = 0.0; 
 
 /*gb1+pi/2 rotation ACW*/ 
 
 gbn1t[0] = cos(ta1 + pi / 2); 
 gbn1t[1] = sin(ta1 + pi / 2); 
 gbn1t[2] = 0.0; 
 
 /*gb2*/ 
 
 gbn2[0] = cos(ta2); 
 gbn2[1] = sin(ta2); 
 gbn2[2] = 0.0; 
 
 /*gb2+pi/2 rotation ACW*/ 
 
 gbn2t[0] = cos(ta2 + pi / 2); 
 gbn2t[1] = sin(ta2 + pi / 2); 
 gbn2t[2] = 0.0; 
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 /*Calculation of position vectors for the TJ surrounding nodes*/ 
 
 for (ki = 0; ki <= 2; ki++)  
 { 
  rcw[ki][stackno - 2] = r[ki][gb1] + gbn1[ki] * ds;   /*up*/ 
  rcw[ki][stackno - 1] = r[ki][gb1] - gbn1[ki] * ds;   /*down*/ 
  rcw[ki][stackno] = r[ki][gb1] + gbn1t[ki] * ds;      /*left*/ 
  rcw[ki][stackno + 1] = r[ki][gb1] - gbn1t[ki] * ds;  /*right*/ 
 
  rcw[ki][stackno + 2] = r[ki][gb2] + gbn2[ki] * ds;   /*up*/ 
  rcw[ki][stackno + 3] = r[ki][gb2] - gbn2[ki] * ds;   /*down*/ 
  rcw[ki][stackno + 4] = r[ki][gb2] + gbn2t[ki] * ds;  /*left*/ 
  rcw[ki][stackno + 5] = r[ki][gb2] - gbn2t[ki] * ds;  /*right*/ 
 } 
 for (ki = 0; ki <= stackno + 5; ki++) 
   fieldi[ki] = -1 * rcw[0][ki]; 
 for (ki = 0; ki <= stackno + 5; ki++)  
 { 
  for (kj = 0; kj <= stackno - 3; kj++)  
  { 
   if (kj == stackno - 3)  
   { 
    for (kl = 0; kl <= 2; kl++)  
    { 
     rrq[kl] = rit[kl][stackno - 1] - rcw[kl][ki]; 
     rrq1[kl] = rit[kl][mv] - rcw[kl][ki]; 
    } 
    eta =  1.0 / 2 * (log(magnitude(rrq[0], rrq[1], rrq[2])) +  

log(magnitude(rrq1[0], rrq1[1], rrq1[2]))); 
    tot = 0.0; 
    for (km = 1; km < mint; km++)  
    { 
     for (kl = 0; kl <= 2; kl++) 
       rrkq[kl] = rit[kl][stackno - 1] + km * (rit[kl][mv] –  

rit[kl][stackno - 1]) / mint - rcw[kl][ki]; 
     tot += log(magnitude(rrkq[0], rrkq[1], rrkq[2])); 
    } 
    delu[kj] = -1.0 / 2 / pi / mint * fabs(sk[stackno - 3]) * (tot  

+ eta); 
   }  
   else if (kj >= mdiv * 4)  
   { 
    if (kj < stackno - 3)  
    { 
     for (kl = 0; kl <= 2; kl++)  
     { 
      rrq[kl] = rit[kl][kj + 3] - rcw[kl][ki]; 
      rrq1[kl] = rit[kl][kj + 2] - rcw[kl][ki]; 
     } 
     eta = 1.0 / 2 * (log(magnitude(rrq[0], rrq[1], rrq[2])) +  

log(magnitude(rrq1[0], rrq1[1], rrq1[2]))); 
     tot = 0.0; 
     for (km = 1; km < mint; km++)  
     { 
      for (kl = 0; kl <= 2; kl++) 
        rrkq[kl] =  rit[kl][kj + 2] + km * (rit[kl][kj + 3] –  

rit[kl][kj + 2]) / mint - rcw[kl][ki]; 
     tot += log(magnitude(rrkq[0], rrkq[1], rrkq[2])); 
     } 
     delu[kj] = -1.0 / 2 / pi / mint * fabs(sk[kj]) * (tot + eta); 
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    } 
   }  
   else if (kj >= mdiv * 2)  
   { 
    if (kj < mdiv * 4)  
    { 
     for (kl = 0; kl <= 2; kl++)  
     { 
      rrq[kl] = rit[kl][kj + 2] - rcw[kl][ki]; 
      rrq1[kl] = rit[kl][kj + 1] - rcw[kl][ki]; 
     } 
     eta = 1.0 / 2 * (log(magnitude(rrq[0], rrq[1], rrq[2])) +  

log(magnitude(rrq1[0], rrq1[1], rrq1[2]))); 
     tot = 0.0; 
     for (km = 1; km < mint; km++)  
     { 
      for (kl = 0; kl <= 2; kl++) 
        rrkq[kl] =  rit[kl][kj + 1] + km * (rit[kl][kj + 2] –  

rit[kl][kj + 1]) / mint - rcw[kl][ki]; 
      tot += log(magnitude(rrkq[0], rrkq[1], rrkq[2])); 
     } 
     delu[kj] = -1.0 / 2 / pi / mint * fabs(sk[kj]) * (tot + eta); 
     } 
    }  
    else  
    { 
     for (kl = 0; kl <= 2; kl++)  
     { 
      rrq[kl] = rit[kl][kj] - rcw[kl][ki]; 
      rrq1[kl] = rit[kl][kj + 1] - rcw[kl][ki]; 
     } 
     eta = 1.0 / 2 * (log(magnitude(rrq[0], rrq[1], rrq[2])) +  

log(magnitude(rrq1[0], rrq1[1], rrq1[2]))); 
     tot = 0.0; 
     for (km = 1; km < mint; km++)  
     { 
      for (kl = 0; kl <= 2; kl++) 
 rrkq[kl] = rit[kl][kj] + km * (rit[kl][kj + 1] - rit[kl][kj])  

/ mint - rcw[kl][ki]; 
      tot += log(magnitude(rrkq[0], rrkq[1], rrkq[2])); 
     } 
     delu[kj] = -1.0 / 2 / pi / mint * fabs(sk[kj]) * (tot + eta); 
    } 
   } 
   fieldii[ki] = 0.0; 
   for (kl = 0; kl <= stackno -3; kl++) 
      fieldii[ki] += delu[kl] * mu[kl]; 
  } 
  for (ki = 0; ki < k; ki++)  
  { 
   fieldif[ki] = fieldi[ki + mdiv * 4]; 
   fieldiif[ki] = fieldii[ki + mdiv * 4]; 
   fieldt[ki] = fieldif[ki] + fieldiif[ki]; 
  } 
  for (ki = 0; ki < k; ki++)  
  { 
   if (ki == 0) 
     fieldtn[ki] =  (fieldt[0] * s[0] + fieldt[k - 1] * s[1]) /  

(s[0] + s[1]); 
   else  
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   { 
    if (ki == k - 1) 
      fieldtn[ki] = (fieldt[k - 2] * s[0] + fieldt[k - 1] * s[k –  

1]) / (s[k - 1] + s[0]); 
      else 
 fieldtn[ki] = (fieldt[ki - 1] * s[ki + 1] + fieldt[ki] *  

s[ki]) / (s[ki + 1] + s[ki]); 
   } 
 } 
 fieldup1 = fieldi[stackno - 2] + fieldii[stackno - 2]; 
 fielddown1 = fieldi[stackno - 1] + fieldii[stackno - 1]; 
 fieldleft1 = fieldi[stackno] + fieldii[stackno]; 
 fieldright1 = fieldi[stackno + 1] + fieldii[stackno + 1]; 
 fieldgb1 = (fieldup1 + fielddown1 + fieldleft1 + fieldright1) / 4; 
 fieldup2 = fieldi[stackno + 2] + fieldii[stackno + 2]; 
 fielddown2 = fieldi[stackno + 3] + fieldii[stackno + 3]; 
 fieldleft2 = fieldi[stackno + 4] + fieldii[stackno + 4]; 
 fieldright2 = fieldi[stackno + 5] + fieldii[stackno + 5]; 
 fieldgb2 = (fieldup2 + fielddown2 + fieldleft2 + fieldright2) / 4; 
} 
 
/*this procedure performs the remeshing by eliminating those 
  segments smaller than rmin and dividing those which are 
  greater than rmax into two parts and also keeps the grain 
  boundary triple junction as a stable point.*/ 
 
/*with grain boundary, (asimetric)*/ 
 
Static Void remeshinggb() 
{ 
 long ki, kj, crm, gnew1, gnew2; 
 double mag, ai, bi, ci; 
 ka = 1; 
 delr1(); 
 rm[0][0] = r[0][0]; 
 rm[1][0] = r[1][0]; 
 rm[2][0] = r[2][0]; 
 
 /*Zone 1*/ 
 
 for (ki = 1; ki < gb1; ki++)  
 { 
  mag = magnitude(delr[0][ki], delr[1][ki], delr[2][ki]); 
  if (mag >= rmax)  
  { 
   for (kj = 0; kj <= 2; kj++)  
   { 
    rm[kj][ka] = (r[kj][ki - 1] + r[kj][ki]) / 2; 
    rm[kj][ka + 1] = r[kj][ki]; 
   } 
   ka += 2; 
  } 
  if (mag < rmax)  
  { 
   if (mag > rmin)  
   { 
    for (kj = 0; kj <= 2; kj++) 
      rm[kj][ka] = r[kj][ki]; 
    ka++; 
   } 
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  } 
  if (mag <= rmin)  
  { 
   for (kj = 0; kj <= 2; kj++) 
     delr[kj][ki + 1] += delr[kj][ki]; 
  } 
 } 
 
 /*Node gb1*/ 
 
 mag = magnitude(delr[0][gb1], delr[1][gb1], delr[2][gb1]); 
 if (mag >= rmax)  
 { 
  for (kj = 0; kj <= 2; kj++)  
  { 
   rm[kj][ka] = (rm[kj][ka - 1] + r[kj][gb1]) / 2; 
   rm[kj][ka + 1] = r[kj][gb1]; 
  } 
  gnew1 = ka + 1; 
  ka += 2; 
 }  
 if (mag < rmax)  
 { 
  if (mag > rmin)  
  { 
   for (kj = 0; kj <= 2; kj++) 
     rm[kj][ka] = r[kj][gb1]; 
   gnew1 = ka; 
   ka++; 
  } 
 } 
 if (mag <= rmin)  
 { 
  ai = delr[0][gb1] + delr[0][gb1 - 1]; 
  bi = delr[1][gb1] + delr[1][gb1 - 1]; 
  ci = delr[2][gb1] + delr[2][gb1 - 1]; 
  mag = magnitude(ai, bi, ci); 
  if (mag >= rmax)  
  { 
   for (kj = 0; kj <= 2; kj++)  
   { 
    rm[kj][ka - 1] = (r[kj][gb1] + rm[kj][ka - 2]) / 2; 
    rm[kj][ka] = r[kj][gb1]; 
   } 
   gnew1 = ka; 
   ka++; 
  }  
  else  
  { 
   for (kj = 0; kj <= 2; kj++) 
     rm[kj][ka - 1] = r[kj][gb1]; 
   gnew1 = ka - 1; 
  } 
 } 
 
 /*Zone 2*/ 
 
 for (ki = gb1 + 1; ki < gb2; ki++)  
 { 
  mag = magnitude(delr[0][ki], delr[1][ki], delr[2][ki]); 
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  if (mag >= rmax)  
  { 
   for (kj = 0; kj <= 2; kj++)  
   { 
    rm[kj][ka] = (r[kj][ki - 1] + r[kj][ki]) / 2; 
    rm[kj][ka + 1] = r[kj][ki]; 
   } 
   ka += 2; 
  } 
  if (mag < rmax)  
  { 
   if (mag > rmin)  
   { 
    for (kj = 0; kj <= 2; kj++) 
      rm[kj][ka] = r[kj][ki]; 
    ka++; 
   } 
  } 
  if (mag <= rmin)  
  { 
   for (kj = 0; kj <= 2; kj++) 
     delr[kj][ki + 1] += delr[kj][ki]; 
  } 
 } 
 
 /*Node gb2*/ 
 
 mag = magnitude(delr[0][gb2], delr[1][gb2], delr[2][gb2]); 
 if (mag >= rmax)  
 { 
  for (kj = 0; kj <= 2; kj++)  
  { 
   rm[kj][ka] = (rm[kj][ka - 1] + r[kj][gb2]) / 2; 
   rm[kj][ka + 1] = r[kj][gb2]; 
  } 
  gnew2 = ka + 1; 
  ka += 2; 
 } 
 if (mag < rmax)  
 { 
  if (mag > rmin)  
  { 
   for (kj = 0; kj <= 2; kj++) 
     rm[kj][ka] = r[kj][gb2]; 
   gnew2 = ka; 
   ka++; 
  } 
 } 
 if (mag <= rmin)  
 { 
  ai = delr[0][gb2] + delr[0][gb2 - 1]; 
  bi = delr[1][gb2] + delr[1][gb2 - 1]; 
  ci = delr[2][gb2] + delr[2][gb2 - 1]; 
  mag = magnitude(ai, bi, ci); 
  if (mag >= rmax)  
  { 
   for (kj = 0; kj <= 2; kj++)  
   { 
    rm[kj][ka - 1] = (r[kj][gb2] + rm[kj][ka - 2]) / 2; 
    rm[kj][ka] = r[kj][gb2]; 
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   } 
   gnew2 = ka; 
   ka++; 
  }  
  else  
  { 
   for (kj = 0; kj <= 2; kj++) 
     rm[kj][ka - 1] = r[kj][gb2]; 
   gnew2 = ka - 1; 
  } 
 } 
 
 /*Zone 3*/ 
 
 for (ki = gb2 + 1; ki < k; ki++)  
 { 
  mag = magnitude(delr[0][ki], delr[1][ki], delr[2][ki]); 
  if (mag >= rmax)  
  { 
   for (kj = 0; kj <= 2; kj++)  
   { 
    rm[kj][ka] = (r[kj][ki - 1] + r[kj][ki]) / 2; 
    rm[kj][ka + 1] = r[kj][ki]; 
   } 
   ka += 2; 
  } 
  if (mag < rmax)  
  { 
   if (mag > rmin)  
   { 
    for (kj = 0; kj <= 2; kj++) 
      rm[kj][ka] = r[kj][ki]; 
    ka++; 
   } 
  } 
  if (mag <= rmin)  
  { 
   if (ki == k - 1)  
   { 
    for (kj = 0; kj <= 2; kj++) 
      delr[kj][0] += delr[kj][k - 1]; 
   }  
   else  
   { 
    for (kj = 0; kj <= 2; kj++) 
      delr[kj][ki + 1] += delr[kj][ki]; 
   } 
  } 
 } 
 
 /*Node 0*/ 
 
 mag = magnitude(delr[0][0], delr[1][0], delr[2][0]); 
 if (mag >= rmax)  
 { 
  for (kj = 0; kj <= 2; kj++)  
  { 
   rm[kj][ka] = (rm[kj][ka - 1] + rm[kj][0]) / 2; 
   rm[kj][ka + 1] = rm[kj][0]; 
  } 
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  crm = ka + 1; 
 } 
 if (mag < rmax)  
 { 
  if (mag > rmin)  
  { 
   for (kj = 0; kj <= 2; kj++) 
     rm[kj][ka] = rm[kj][0]; 
   crm = ka; 
  } 
 } 
 if (mag <= rmin)  
 { 
  ai = delr[0][0] + delr[0][k - 1]; 
  bi = delr[1][0] + delr[1][k - 1]; 
  ci = delr[2][0] + delr[2][k - 1]; 
  mag = magnitude(ai, bi, ci); 
  if (mag >= rmax)  
  { 
   for (kj = 0; kj <= 2; kj++)  
   { 
    rm[kj][ka - 1] = (rm[kj][0] + rm[kj][ka - 2]) / 2; 
    rm[kj][ka] = rm[kj][0]; 
   } 
   crm = ka; 
  }  
  else  
  { 
   for (kj = 0; kj <= 2; kj++) 
     rm[kj][ka - 1] = rm[kj][0]; 
   crm = ka - 1; 
  } 
 } 
 k = crm; 
 gb1 = gnew1; 
 gb2 = gnew2; 
} 
 
/*this procedure generates the initial system*/ 
 
Static Void generate() 
{ 
 void_();   /*procedure*/ 
 rxyt();   /*procedure*/ 
 ao = area(k, r); 
} 
 
/*this procedure gets the initial parameters from a file called 

electromigration.dat*/ 
 
Static Void getparam() 
{ 
 f = fopen("phd-2g.dat", "r"); 
 
 /*experiment type parameters*/ 
 
 fscanf(f, "%lg%*[^\n]", &newdata); 
 getc(f);   /*1: if 0 new experiment if 1 continuous from  

     cont.dat*/ 
 fscanf(f, "%lg%*[^\n]", &gbdata); 
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 getc(f);   /*2:  if 0 no gb if 1 gb*/ 
 fscanf(f, "%lg%*[^\n]", &control); 
 getc(f);   /*3:  if 1 equilibrium, if 2 failure, if 3 detachment   
                  experiment, if 4 both case 1 or 3*/ 
 
 /*interconnect-void system parameters*/ 
 
 fscanf(f, "%lg%*[^\n]", &ro); 
 getc(f);   /*4:  the radius of the void*/ 
 fscanf(f, "%lg%*[^\n]", &e); 
 getc(f);   /*5:  void exantricity*/ 
 fscanf(f, "%lg%*[^\n]", &shape); 
 getc(f);   /*6:  void shape*/ 
 fscanf(f, "%ld%*[^\n]", &t); 
 getc(f);   /*7:  initial loop number*/ 
 fscanf(f, "%ld%*[^\n]", &ms); 
 getc(f);   /*8:  data record number*/ 
 fscanf(f, "%lg%*[^\n]", &deltat); 
 getc(f);   /*9:  initial time interval*/ 
 fscanf(f, "%lg%*[^\n]", &epstime); 
 getc(f);   /*10: time step correction*/ 
 fscanf(f, "%lg%*[^\n]", &epsmin); 
 getc(f);   /*11: minimum segment length*/ 
 fscanf(f, "%lg%*[^\n]", &epsmax); 
 getc(f);   /*12: maximum segment length*/ 
 fscanf(f, "%lg%*[^\n]", &ksi); 
 getc(f);   /*13: electron wind intensity*/ 
 fscanf(f, "%ld%*[^\n]", &nl); 
 getc(f);   /*14: loop number*/ 
 fscanf(f, "%lg%*[^\n]", &time); 
 getc(f);   /*15: real time*/ 
 fscanf(f, "%ld%*[^\n]", &mint); 
 getc(f);   /*16: integration segment number (odd)*/ 
 fscanf(f, "%lg%*[^\n]", &sl); 
 getc(f);   /*17: strip length coefficient*/ 
 fscanf(f, "%lg%*[^\n]", &sw); 
 getc(f);   /*18: strip width coefficient*/ 
 fscanf(f, "%ld%*[^\n]", &mdiv); 
 getc(f);   /*19: division*/ 
 fscanf(f, "%lg%*[^\n]", &vsl); 
 getc(f);   /*20: void segment length coefficient*/ 
 fscanf(f, "%lg%*[^\n]", &dm); 
 getc(f);   /*21: mean segment lenght*/ 
 
 /*grain boundary parameters*/ 
 
 fscanf(f, "%ld%*[^\n]", &gb1); 
 getc(f);   /*22: location of the first grain boundary*/ 
 fscanf(f, "%lg%*[^\n]", &dihedral1); 
 getc(f);   /*23: equilibrium dihedral angle between gb1 and void*/ 
 fscanf(f, "%lg%*[^\n]", &tat1); 
 getc(f);   /*24: gb1 tilt angle*/ 
 fscanf(f, "%lg%*[^\n]", &mfold1); 
 getc(f);   /*25: half-fold number for the first grain*/ 
 fscanf(f, "%lg%*[^\n]", &adif1); 
 getc(f);   /*26: anisotropy intensity for the first grain*/ 
 fscanf(f, "%lg%*[^\n]", &tang1); 
 getc(f);   /*27: texture tilt angle for the first grain*/ 
 
 fscanf(f, "%ld%*[^\n]", &gb2); 
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 getc(f);   /*28: location of the second grain boundary*/ 
 fscanf(f, "%lg%*[^\n]", &dihedral2); 
 getc(f);   /*29: equilibrium dihedral angle between gb2 and void*/ 
 fscanf(f, "%lg%*[^\n]", &tat2); 
 getc(f);   /*30: gb2 tilt angle*/ 
 fscanf(f, "%lg%*[^\n]", &mfold2); 
 getc(f);   /*31: half-fold number for the second grain*/ 
 fscanf(f, "%lg%*[^\n]", &adif2); 
 getc(f);   /*32: anisotropy intensity for the second grain*/ 
 fscanf(f, "%lg%*[^\n]", &tang2); 
 getc(f);   /*33: texture tilt angle for the second grain*/ 
 
 fscanf(f, "%lg%*[^\n]", &mgb); 
 getc(f);   /*34: grain boundary longitudinal mobility*/ 
 fscanf(f, "%lg%*[^\n]", &tmgb); 
 getc(f);   /*35: grain boundary transverse mobility*/ 
 fscanf(f, "%lg%*[^\n]", &mdrift); 
 getc(f);   /*36: grain boundary drift mobility*/ 
 
 /*interconnect kinetic parameters*/ 
 
 fscanf(f, "%lg%*[^\n]", &mobility); 
 getc(f);   /*37: normalized bulk mobility coefficient*/ 
 fscanf(f, "%lg%*[^\n]", &eta); 
 getc(f);   /*38: normalized bulk gibbs free energy*/ 
 
 /*equilibrium parameter*/ 
 
 fscanf(f, "%lg%*[^\n]", &vmineq); 
 getc(f);   /*39: in the equilibrum experiments minimum node  

displacement for the equilibrium*/ 
 
 pi = 3.1415926535897932384626433832795; 
 
 ds = vsl * ro;   /** void segment length*/ 
 sl *= ro;        /** strip length*/ 
 sw *= ro;        /** strip width*/ 
 delta = 0.1 * ro;              /** grain boundary thickness*/ 
 omega = delta * delta * delta; /** the atomic volume*/ 
 
 lamda1 = cos(dihedral1 * pi / 180); /** wetting parameter for the  

first grain*/ 
 lamda2 = cos(dihedral2 * pi / 180); /** wetting parameter for the  

second grain*/ 
 
 ta1 = tat1 * pi / 180;    /** gb1 tilt angle in rad*/ 
 ta2 = tat2 * pi / 180;    /** gb2 tilt angle in rad*/ 
 
 tta1 = tang1 * pi / 180;    /** texture tilt angle in rad*/ 
 tta2 = tang2 * pi / 180;    /** texture tilt angle in rad*/ 
} 
 
/*this procedure gets the last parameters of the void, calculated 

previously, from a file called cont.txt*/ 
 
Static Void getcontparam() 
{ 
 long aii; 
 double sil; 
 f = fopen("cont.txt", "r"); 
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fscanf(f,"%lg%lg%lg%lg%lg%lg%lg%lg%lg%ld%ld%ld%lg%ld%lg%lg%lg%ld%ld
%lg%lg%*[^\n]", r[0], r[1], &sil, &sil, &sil, &sil, &sil, 
&sil, &sil, &k, &t, &ms, &time,&mm, &sil, &sil, &sil, &gb1, 
&gb2, &tat1, &tat2); 

 getc(f); 
 for (aii = 1; aii <= k; aii++)  
 { 
  fscanf(f, "%lg%lg%*[^\n]", &r[0][aii], &r[1][aii]); 
  getc(f); 
 } 
 ta1 = tat1 * pi / 180;   /** gb1 tilt angle in rad*/ 
 ta2 = tat2 * pi / 180;   /** gb2 tilt angle in rad*/ 
} 
 
/*ogurtani model: void-grain boundary interaction under the effect 

of electron wind and thermal streses using IBEM calculations*/ 
 
/*finite strip with "grain boundary"*/ 
 
Static Void finalgb() 
{ 
 long  aii, ajj; 
 double  mide, gb1e, gb2e, widthmax, uacc, lacc, utjmin, ltjmax,  

jgbaf1, jgbaf2; 
 double TEMP, TEMP1; 
 mide = 0.0; 
 gb1e = 0.0; 
 gb2e = 0.0; 
 ulpart();     /*procedure*/ 
 if (newdata == 0) 
   generate();     /*procedure*/ 
 if (newdata == 1) 
   getcontparam();    /*procedure*/ 
 while (t <= nl)  
 { 
  delr1();     /*procedure*/ 
  stack();     /*procedure*/ 
  psir();      /*procedure*/ 
  anisotropygb();    /*procedure*/ 
  kappa();     /*procedure*/ 
 
  if (ksi != 0)  
  { 
   noc1();     /*procedure*/ 
   rcv1();     /*procedure*/ 
   rcw1();     /*procedure*/ 
   tin();     /*procedure*/ 
   elf();     /*procedure*/ 
   field();     /*procedure*/ 
   if (t == 1)  
   { 
    f = fopen("noc.txt", "a"); 
    f = tmpfile(); 
    for (ajj = 0; ajj <= 2; ajj++)  
    { 
     for (aii = 0; aii < mdiv * 4 +k; aii++) 
     fprintf(f, "%14.15f  ", noc[ajj][aii]); 
     putc('\n', f); 
    } 
    fclose(f); 
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    f = fopen("rcw.txt", "a"); 
    f = tmpfile(); 
    for (ajj = 0; ajj <= 2; ajj++)  
    { 
     for (aii = 0; aii <= stackno - 3; aii++) 
       fprintf(f, "%14.15f  ", rcw[ajj][aii]); 
     putc('\n', f); 
    } 
    fclose(f); 
 
    f = fopen("mu.txt", "a"); 
    f = tmpfile(); 
    for (ajj = 0; ajj <= mm; ajj++) 
      fprintf(f, "%14.15f\n", mu[ajj]); 
    fclose(f); 
   
    f = fopen("field.txt", "a"); 
    f = tmpfile(); 
    for (ajj = 0; ajj < k; ajj++) 
      fprintf(f, "%14.15f\n", fieldtn[ajj]); 
    fclose(f); 
   } 
  } 
 
  if (t == 1)  
  { 
   f = fopen("ru.txt", "a"); 
   f = tmpfile(); 
   for (aii = 0; aii <= mdiv * 2; aii++) 
     fprintf(f, "%14.15f  %14.15f  \n", ru[0][aii], ru[1][aii]); 
   fclose(f); 
    
   f = fopen("rl.txt", "a"); 
   f = tmpfile(); 
   for (aii = 0; aii <= mdiv * 2; aii++) 
     fprintf(f, "%14.15f  %14.15f  \n", rl[0][aii], rl[1][aii]); 
   fclose(f); 
    
   f = fopen("rvector.txt", "a"); 
   f = tmpfile(); 
   for (ajj = 0; ajj <= 2; ajj++)  
   { 
    for (aii = 0; aii < k; aii++) 
      fprintf(f, "%14.15f  ", r[ajj][aii]); 
    putc('\n', f); 
   } 
   fprintf(f, "%14.15f  ", ao); 
   close(f); 
 
   f = fopen("delrvector.txt", "a"); 
   f = tmpfile(); 
   for (ajj = 0; ajj <= 2; ajj++)  
   { 
    for (aii = 0; aii < k; aii++) 
    fprintf(f, "%14.15f  ", delr[ajj][aii]); 
   putc('\n', f); 
   } 
   fclose(f); 
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   f = fopen("s.txt", "a"); 
   f = tmpfile(); 
   for (ajj = 0; ajj < k; ajj++) 
     fprintf(f, "%14.15f\n", s[ajj]); 
   fclose(f); 
    
   f = fopen("teta.txt", "a"); 
   f = tmpfile(); 
   for (ajj = 0; ajj < k; ajj++) 
     fprintf(f, "%14.15f\n", teta[ajj]); 
   fclose(f); 
    
   f = fopen("diff.txt", "a"); 
   f = tmpfile(); 
   for (ajj = 0; ajj < k; ajj++) 
     fprintf(f, "%14.15f\n", diff[ajj]); 
   fclose(f); 
 
   f = fopen("kapkap.txt", "a"); 
   f = tmpfile(); 
   for (ajj = 0; ajj < k; ajj++) 
     fprintf(f, "%14.15f\n", kapkap[ajj]); 
   fclose(f); 
  
   f = fopen("lln.txt", "a"); 
   f = tmpfile(); 
   for (ajj = 0; ajj <= 2; ajj++)  
   { 
    for (aii = 0; aii < k; aii++) 
      fprintf(f, "%14.15f  ", lln[ajj][aii]); 
    putc('\n', f); 
   } 
   fclose(f); 
  } 
 
  if (ksi == 0)  
  { 
   for (aii = 0; aii < k; aii++) 
     fieldtn[aii] = 0.0; 
  } 
  for (aii = 0; aii < k; aii++)  
  { 
   psi[aii] = ksi * fieldtn[aii]; 
   ekap[aii] = kapkap[aii] + psi[aii]; 
  } 
 
  /*Applied electric field vector*/ 
 
  aefield[0] = 1.0; 
  aefield[1] = 0.0; 
  aefield[2] = 0.0; 
 
  /*Calculation of instantaneous grain-boundary left and right  

dihedral angles*/ 
 
  /*gb1*/ 
 
  /*teta1 -*/ 
 
  gbr1 = angle(-gbn1[0], -gbn1[1], -gbn1[2], -delr[0][gb1], - 
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delr[1][gb1], -delr[2][gb1]); 
 
  /*teta1 +*/ 
 
  gbl1 = angle(delr[0][gb1 + 1], delr[1][gb1 + 1], delr[2][gb1 +  

1], -gbn1[0], -gbn1[1], -gbn1[2]); 
 
  /*gb2*/ 
 
  /*teta2 -*/ 
 
  gbr2 = angle(-gbn2[0], -gbn2[1], -gbn2[2], -delr[0][gb2], - 

delr[1][gb2], -delr[2][gb2]); 
 
  /*teta2 +*/ 
 
  gbl2 = angle(delr[0][gb2 + 1], delr[1][gb2 + 1], delr[2][gb2 +  

1], -gbn2[0], -gbn2[1], -gbn2[2]); 
 
  /*node velocities*/ 
 
  for (ajj = 0; ajj < k; ajj++)  
  { 
 
   /*0*/ 
 
   if (ajj == 0)  
   { 
    v[ajj] = diff[1] * (ekap[1] - ekap[0]) / s[1] - diff[0] *  

(ekap[0] - ekap[k - 1]) / s[0]; 
    v[ajj] = 2 * v[ajj] / (s[1] + s[0]) - mobility * (eta +  

kapkap[0]); 
   }  
 
   /*k-1*/ 
 
   else if (ajj == k - 1)  
   { 
    v[ajj] = diff[0] * (ekap[0] - ekap[k - 1]) / s[0] - diff[k - 1]  

* (ekap[k - 1] - ekap[k - 2]) / s[k - 1]; 
    v[ajj] = 2 * v[ajj] / (s[0] + s[k - 1]) - mobility * (eta +  

kapkap[k - 1]); 
   }  
 
   /*gb1-1*/ 
 
   else if (ajj == gb1 - 1)  
   { 
    vectorpro(delr[0][gb1], delr[1][gb1], delr[2][gb1], delr[0][gb1  

+ 1], delr[1][gb1 + 1], delr[2][gb1 + 1]); 
    curve = dotpro(vect[0], vect[1], vect[2], 0.0, 0.0, 1.0); 
    if (curve < 0) 
      sign = -1.0; 
    else 
      sign = 1.0; 
    vectorpro(delr[0][gb1] / s[gb1], delr[1][gb1] / s[gb1],  

delr[2][gb1] / s[gb1], gbn1[0], gbn1[1], gbn1[2]); 
    vtrans1 = dotpro(vect[0], vect[1], vect[2], 0.0, 0.0, 1.0); 
    vectorpro(delr[0][gb1 + 1] / s[gb1 + 1], delr[1][gb1 + 1] /  
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s[gb1 + 1], delr[2][gb1 + 1] / s[gb1 + 1], gbn1[0], 
gbn1[1], gbn1[2]); 

    vtrans1 -= dotpro(vect[0], vect[1], vect[2], 0.0, 0.0, 1.0); 
    jgbaf1 = mdrift * ksi / omega * (fieldup1 - fieldgb1) / ds; 
    v[ajj] = mgb * (delta / -2 / omega) * (lamda1 –  

dotpro(delr[0][gb1] / s[gb1], delr[1][gb1] / s[gb1], 
delr[2][gb1] / s[gb1], gbn1[0], gbn1[1], gbn1[2])); 

    v[ajj] += diff[gb1] * (psi[gb1] - psi[gb1 - 1]) / s[gb1]; 
    v[ajj] += diff[gb1 - 1] * (ekap[gb1 - 2] - ekap[gb1 - 1]) /  

s[gb1 - 1] - jgbaf1 / 2; 
    v[ajj] += sign * tmgb * delta / omega * vtrans1; 
    v[ajj] = 2 * v[ajj] / (2 * s[gb1] + s[gb1 - 1]) - mobility *  

(eta + kapkap[gb1 - 1]); 
   } 
  
   /*gb1*/ 
 
   else if (ajj == gb1)  
   { 
    v[ajj] = 2 * lamda1 - dotpro(delr[0][gb1 + 1] / s[gb1 + 1],  

delr[1][gb1 + 1] / s[gb1 + 1], delr[2][gb1 + 1] / 
s[gb1 + 1], -gbn1[0], -gbn1[1], -gbn1[2]); 

    v[ajj] = mgb * (v[ajj] - dotpro(delr[0][gb1] / s[gb1],  
delr[1][gb1] / s[gb1], delr[2][gb1] / s[gb1], gbn1[0], 
gbn1[1], gbn1[2])) / 2 / omega; 

   }  
 
   /*gb1+1*/ 
 
   else if (ajj == gb1 + 1)  
   { 
    v[ajj] = mgb * (delta / -2 / omega) * (lamda1 –  

dotpro(delr[0][gb1 + 1] / s[gb1 + 1], delr[1][gb1 + 1] 
/ s[gb1 + 1], delr[2][gb1 + 1] / s[gb1 + 1], -gbn1[0], 
-gbn1[1], -gbn1[2])); 

    v[ajj] += diff[gb1 + 2] * (ekap[gb1 + 2] - ekap[gb1 + 1]) /  
s[gb1 + 2]; 

    v[ajj] += diff[gb1 + 1] * (psi[gb1] - psi[gb1 + 1]) / s[gb1 +  
1] - jgbaf1 / 2; 

    v[ajj] -= sign * tmgb * delta / omega * vtrans1; 
    v[ajj] = 2 * v[ajj] / (s[gb1 + 2] + 2 * s[gb1 + 1]) - mobility  

* (eta + kapkap[gb1 + 1]); 
   }  
 
   /*gb2-1*/ 
 
   else if (ajj == gb2 - 1)  
   { 
    vectorpro(delr[0][gb2], delr[1][gb2], delr[2][gb2], delr[0][gb2  

+ 1], delr[1][gb2 + 1], delr[2][gb2 + 1]); 
    curve = dotpro(vect[0], vect[1], vect[2], 0.0, 0.0, 1.0); 
    if (curve < 0) 
      sign = -1.0; 
    else 
      sign = 1.0; 
    jgbaf2 = mdrift * ksi / omega * (fieldup2 - fieldgb2) / ds; 
    vectorpro(delr[0][gb2] / s[gb2], delr[1][gb2] / s[gb2],  

delr[2][gb2] / s[gb2], gbn2[0], gbn2[1], gbn2[2]); 
    vtrans2 = dotpro(vect[0], vect[1], vect[2], 0.0, 0.0, 1.0); 
    vectorpro(delr[0][gb2 + 1] / s[gb2 + 1], delr[1][gb2 + 1] /  
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s[gb2 + 1], delr[2][gb2 + 1] / s[gb2 + 1], gbn2[0], 
gbn2[1], gbn2[2]); 

    vtrans2 -= dotpro(vect[0], vect[1], vect[2], 0.0, 0.0, 1.0); 
    v[ajj] = mgb * (delta / -2 / omega) * (lamda2 –  

dotpro(delr[0][gb2] / s[gb2], delr[1][gb2] / s[gb2], 
delr[2][gb2] / s[gb2], gbn2[0], gbn2[1], gbn2[2])); 

    v[ajj] += diff[gb2] * (psi[gb2] - psi[gb2 - 1]) / s[gb2]; 
    v[ajj] += diff[gb2 - 1] * (ekap[gb2 - 2] - ekap[gb2 - 1]) /  

s[gb2 - 1] - jgbaf2 / 2; 
    v[ajj] += sign * tmgb * delta / omega * vtrans2; 
    v[ajj] = 2 * v[ajj] / (2 * s[gb2] + s[gb2 - 1]) - mobility *  

(eta + kapkap[gb2 - 1]); 
   }  
 
   /*gb2*/ 
 
   else if (ajj == gb2)  
   { 
    v[ajj] = 2 * lamda2 - dotpro(delr[0][gb2 + 1] / s[gb2 + 1],  

delr[1][gb2 + 1] / s[gb2 + 1], delr[2][gb2 + 1] / 
s[gb2 + 1], -gbn2[0], -gbn2[1], -gbn2[2]); 

    v[ajj] = mgb * (v[ajj] - dotpro(delr[0][gb2] / s[gb2],  
delr[1][gb2] / s[gb2], delr[2][gb2] / s[gb2], gbn2[0], 
gbn2[1], gbn2[2])) / 2 / omega; 

   } 
 
   /*gb2+1*/ 
  
   else if (ajj == gb2 + 1)  
   { 
    v[ajj] = mgb * (delta / -2 / omega) * (lamda2 –  

dotpro(delr[0][gb2 + 1] / s[gb2 + 1], delr[1][gb2 + 1] 
/ s[gb2 + 1], delr[2][gb2 + 1] / s[gb2 + 1], -gbn2[0], 
-gbn2[1], -gbn2[2])); 

    v[ajj] += diff[gb2 + 2] * (ekap[gb2 + 2] - ekap[gb2 + 1]) /  
s[gb2 + 2]; 

    v[ajj] += diff[gb2 + 1] * (psi[gb2] - psi[gb2 + 1]) / s[gb2 +  
1] - jgbaf2 / 2; 

    v[ajj] -= sign * tmgb * delta / omega * vtrans2; 
    v[ajj] = 2 * v[ajj] / (s[gb2 + 2] + 2 * s[gb2 + 1]) - mobility  

* (eta + kapkap[gb2 + 1]); 
   }  
 
/*rest of the void*/ 
 
   else  
   { 
    v[ajj] = diff[ajj + 1] * (ekap[ajj + 1] - ekap[ajj]) / s[ajj +  

1] - diff[ajj] * (ekap[ajj] - ekap[ajj - 1]) / s[ajj]; 
    v[ajj] = 2 * v[ajj] / (s[ajj + 1] + s[ajj]) - mobility * (eta +  

kapkap[ajj]); 
   } 
  } 
  vmax = fabs(v[0]); 
  for (aii = 1; aii < k; aii++)  
  { 
   if (fabs(v[aii]) >= vmax) 
     vmax = fabs(v[aii]); 
  } 
  for (ajj = 0; ajj < k; ajj++)  
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  { 
   if (ajj == gb1)  
   { 
    r[0][ajj] += deltat * v[ajj] * gbn1[0]; 
    r[1][ajj] += deltat * v[ajj] * gbn1[1]; 
    r[2][ajj] += deltat * v[ajj] * gbn1[2]; 
   } 
   else if (ajj == gb2)  
   { 
    r[0][ajj] += deltat * v[ajj] * gbn2[0]; 
    r[1][ajj] += deltat * v[ajj] * gbn2[1]; 
    r[2][ajj] += deltat * v[ajj] * gbn2[2]; 
   }  
   else  
   { 
    r[0][ajj] += deltat * v[ajj] * lln[0][ajj]; 
    r[1][ajj] += deltat * v[ajj] * lln[1][ajj]; 
    r[2][ajj] += deltat * v[ajj] * lln[2][ajj]; 
   } 
  } 
 
  /*calculation of record time step*/ 
 
  if (t < 257) 
    mpow = timer(2L, ms); 
  else if (t < 1001) 
    mpow = (ms - 9) * 100 + 300; 
  else if (t < 10001) 
    mpow = (ms - 16) * 250 + 1000; 
  else if (t < 20001) 
    mpow = (ms - 52) * 1000 + 10000; 
  else if (t < 100001L) 
    mpow = (ms - 62) * 2500 + 20000; 
  else if (t < 1000001L) 
    mpow = (ms - 94) * 5000 + 100000L; 
  else 
    mpow = (ms - 274) * 50000L + 1000000L; 
 
  /*system situation control*/ 
 
  if (control == 1)      /*equilibrium*/ 
  { 
   uacc = 1 + vmineq * epstime; 
    lacc = 1 - vmineq * epstime; 
    if (mide < fabs(r[0][0] * uacc))  
    { 
     if (mide > fabs(r[0][0] * lacc))  
     { 
      if (gb1e < fabs(r[1][gb1] * uacc))  
      { 
       if (gb1e > fabs(r[1][gb1] * lacc))  
       { 
        if (gb2e < fabs(r[1][gb2] * uacc))  
        { 
        if (gb2e > fabs(r[1][gb2] * lacc))  
         { 
   finstep = t; 
   t = nl + 1; 
   mpow = t; 
      } 
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   } 
       } 
      } 
     } 
    } 
    mide = fabs(r[0][0]); 
    gb1e = fabs(r[1][gb1]); 
    gb2e = fabs(r[1][gb2]); 
   }  
   else if (control == 2)   /*width*/ 
   { 
    widthmax = 0.0; 
    for (aii = 0; aii < k; aii++)  
    { 
     if (fabs(r[1][aii]) > widthmax) 
       widthmax = fabs(r[1][aii]); 
    } 
    if (widthmax > sw)  
    { 
     finstep = t; 
     t = nl + 1; 
     mpow = t; 
    } 
   }  
   else if (control == 3)   /*detachment*/ 
   { 
    utjmin = r[1][gb1]; 
    ltjmax = r[1][gb2]; 
    for (aii = 1; aii <= 10; aii++)  
    { 
     if (r[1][gb1 - aii] < utjmin) 
       utjmin = r[1][gb1 - aii]; 
     if (r[1][gb2 + aii] > ltjmax) 
       ltjmax = r[1][gb2 + aii]; 
    } 
    if (utjmin <= ltjmax)  
    { 
     finstep = t; 
     t = nl + 1; 
     mpow = t; 
    } 
   }  
   else if (control == 4)   /*equilibrium-detachment*/ 
   { 
    uacc = 1 + vmineq * epstime; 
    lacc = 1 - vmineq * epstime; 
    if (mide < fabs(r[0][0] * uacc))  
    { 
     if (mide > fabs(r[0][0] * lacc))  
     { 
      if (gb1e < fabs(r[1][gb1] * uacc))  
      { 
       if (gb1e > fabs(r[1][gb1] * lacc))  
       { 
        if (gb2e < fabs(r[1][gb2] * uacc))  
        { 
    if (gb2e > fabs(r[1][gb2] * lacc))  
         { 
   finstep = t; 
   t = nl + 1; 
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          mpow = t; 
          control = 3.0; 
         } 
        } 
       } 
      } 
     } 
    } 
    mide = fabs(r[0][0]); 
    gb1e = fabs(r[1][gb1]); 
    gb2e = fabs(r[1][gb2]); 
 
   /*detachment*/ 
 
   utjmin = r[1][gb1]; 
   ltjmax = r[1][gb2]; 
   for (aii = 1; aii <= 10; aii++)  
   { 
    if (r[1][gb1 - aii] < utjmin) 
      utjmin = r[1][gb1 - aii]; 
    if (r[1][gb2 + aii] > ltjmax) 
      ltjmax = r[1][gb2 + aii]; 
   } 
   if (utjmin <= ltjmax)  
   { 
    finstep = t; 
    t = nl + 1; 
    mpow = t; 
    control = 1.0; 
   } 
  } 
 
  /*recording the instantaneous system situation*/ 
 
  if (t == mpow)  
  { 
   for (aii = 0; aii < k; aii++)  
   { 
    fx[aii] = r[0][aii]; 
    fy[aii] = r[1][aii]; 
   } 
   fx[k] = fx[0]; 
   fy[k] = fy[0]; 
 
   /*Calculation of centre of gravity of the void*/ 
 
   brea = 0.0; 
   crea = 0.0; 
   for (aii = 0; aii < k; aii++)  
   { 
    if (aii == k - 1)  
    { 
     bre[aii] = (fy[0] + fy[aii]) / 2 * (fx[0] + fx[aii]) / 2 *  

(fx[0] - fx[aii]); 
     TEMP = (fy[0] + fy[aii]) / 2; 
     cre[aii] = TEMP * TEMP * (fx[0] - fx[aii]); 
    }  
    else  
    { 
     bre[aii] = (fy[aii + 1] + fy[aii]) / 2 * (fx[aii + 1] +  
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fx[aii]) / 2 * (fx[aii + 1] - fx[aii]); 
     TEMP = (fy[aii + 1] + fy[aii]) / 2; 
     cre[aii] = TEMP * TEMP * (fx[aii + 1] - fx[aii]); 
    } 
    are = area(k, r); 
    brea -= bre[aii]; 
    crea -= cre[aii]; 
   } 
   xc = brea / are; 
   yc = crea / are; 
 
   f = fopen("name.txt", "w"); 
   rewind(f); 
   fprintf(f, "%ld", ms); 
   fprintf(f, "csl.txt"); 
   fclose(f); 
 
   g = fopen("name.txt", "r"); 
   fgets(sy, 256, g); 
   fclose(g); 
 
   f = fopen(sy, "a"); 
   rewind(f); 
   fprintf(f, "%13.13f  %13.13f  %13.13f  %13.13f  %13.13f  %13.13f  

%13.13f  %13.13f  %13.13f  %12ld  %12ld  %12ld  %13.13f  
%12ld  %13.13f  %13.13f  %13.13f  %12ld  %12ld  %13.13f  
%13.13f  %13.13f  %13.13f  %13.13f  %13.13f\n", fx[0], 
fy[0], mu[0], fieldtn[0], lln[0][0], lln[1][0], v[0], 
diff[0], dteta[0], k, t, ms, time, mm, xc, yc, are, gb1, 
gb2, tat1, tat2, gbr1, gbl1, gbr2, gbl2); 

 
   for (aii = 1; aii <= mm; aii++) 
     fprintf(f, "%13.13f  %13.13f  %13.13f  %13.13f  %13.13f  

%13.13f  %13.13f  %13.13f  %13.13f\n", fx[aii], 
fy[aii], mu[aii], fieldtn[aii], lln[0][aii], 
lln[1][aii], v[aii], diff[aii], dteta[aii]); 

   fclose(f); 
   ms++; 
  } 
  deltat = epstime * dm / vmax; 
  rmin = epsmin * dm; 
  rmax = epsmax * dm; 
  remeshinggb();      /*procedure*/ 
  for (aii = 0; aii <= 2; aii++)  
  { 
   for (ajj = 0; ajj < k; ajj++) 
     r[aii][ajj] = rm[aii][ajj]; 
  } 
  time += deltat; 
  t++; 
 } 
} 
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/*main program electromigration*/ 
 
main(argc, argv) 
int argc; 
Char *argv[]; 
{  
 getparam();       /*procedure*/ 
 printf("  \n"); 
 printf("Electromigration\n"); 
 finalgb();       /*procedure*/ 
 if (control == 1) 
   printf("System Equilibrium Satisfied\n"); 
 else if (control == 2) 
   printf("Interconnect Line Failed\n"); 
 else if (control == 3) 
   printf("Detachment Compleated\n"); 
 printf("final record no:%ld\n", ms - 1); 
 printf("final step:%ld\n", finstep); 
 printf("final time:%13.13f\n", time); 
 printf("COMPUTER SIMULATION LABORATORY"); 
 fclose(f); 
 fclose(g); 
 exit(EXIT_SUCCESS); 
} 
/* End. */ 
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